4,596 research outputs found

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning

    Full text link
    BACKGROUND: The flight patterns of albatrosses and shearwaters have become a touchstone for much of Lévy flight research, spawning an extensive field of enquiry. There is now compelling evidence that the flight patterns of these seabirds would have been appreciated by Paul Lévy, the mathematician after whom Lévy flights are named. Here we show that Lévy patterns (here taken to mean spatial or temporal patterns characterized by distributions with power-law tails) are, in fact, multifaceted in shearwaters being evident in both spatial and temporal patterns of activity. RESULTS: We tested for Lévy patterns in the at-sea behaviours of two species of shearwater breeding in the North Atlantic Ocean (Calonectris borealis) and the Mediterranean sea (C. diomedea) during their incubating and chick-provisioning periods. We found that distributions of flight durations, on/in water durations and inter-dive time-intervals have power-law tails and so bear the hallmarks of Lévy patterns. CONCLUSIONS: The occurrence of these statistical laws is remarkable given that bird behaviours are strongly shaped by an individual’s motivational state and by complex environmental interactions. Our observations could take Lévy patterns as models of animal behaviour to a new level by going beyond the characterisation of spatial movements to characterise how different behaviours are interwoven throughout daily animal life

    Developmental trajectory classes in psychological dysregulation predict later decision-making competence

    Get PDF
    Adolescence and emerging adulthood are developmental periods associated with increased risk taking, including alcohol and substance use and antisocial behaviors. Typical psychological growth from adolescence into early adulthood reflects increases in traits related to psychological regulation (e.g., greater emotional stability and less impulsivity), which are typically considered protective factors against risk behaviors. However, individuals may vary greatly in their development of these characteristics. This study examines the degree to which heterogeneity in developmental trajectories of psychological regulation are associated with later performance on decision-making skills battery. In this study, psychological regulation was assessed at age 10–12, with follow-up assessments at 14, 16, and 19 years. At age 19, we administered the Youth Decision-Making Competence (DMC; Parker & Fischhoff, 2005) measure. Correlational analyses revealed that lower psychological regulation, as early as age 10, was associated with lower DMC scores. A latent class growth mixture model yielded three distinct developmental trajectory classes of psychological dysregulation: (a) a Moderate-Stable group, a modal class that demonstrated stable and average regulative tendencies throughout adolescence, (b) a Low-Decreasing group, which demonstrated greater self-regulation throughout childhood, and a (c) High-Increasing group, which demonstrated low self-regulative tendencies (higher dysregulation) at age 10 that became increasingly dysregulated throughout adolescence. Individuals in the High-Increasing group demonstrated lower DMC performance than those in the Moderate-Stable and Low-Decreasing groups. Our findings also reinforce past work that indicates considerable individual differences in intra-individual change across adolescence, and that early patterns of psychological dysregulation development can impact later decision-making tendencies

    X-ray dips in the seyfert galaxy fairall 9: Compton-thick "cOMETS" or a failed radio galaxy?

    Get PDF
    We investigate the spectral variability of the Seyfert galaxy Fairall 9 using almost 6 years of monitoring with the Rossi X-ray Timing Explorer (RXTE) with an approximate time resolution of 4 days. We discover the existence of pronounced and sharp dips in the X-ray flux, with a rapid decline of the 2--20 keV flux of a factor 2 or more followed by a recovery to pre-dip fluxes after ~10 days . These dips skew the flux distribution away from the commonly observed log-normal distribution. Dips may result from the eclipse of the central X-ray source by broad line region (BLR) clouds, as has recently been found in NGC 1365 and Mrk 766. Unlike these other examples, however, the clouds in Fairall 9 would need to be Compton-thick, and the non-dip state is remarkably free of any absorption features. A particularly intriguing alternative is that the accretion disk is undergoing the same cycle of disruption/ejection as seen in the accretion disks of broad line radio galaxies (BLRGs) such as 3C120 but, for some reason, fails to create a relativistic jet. This suggests that a detailed comparison of Fairall 9 and 3C120 with future high-quality data may hold the key to understanding the formation of relativistic jets in AGN

    Evidence for a pervasive 'idling-mode' activity template in flying and pedestrian insects

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordUnderstanding the complex movement patterns of animals in natural environments is a key objective of 'movement ecology'. Complexity results from behavioural responses to external stimuli but can also arise spontaneously in their absence. Drawing on theoretical arguments about decision-making circuitry, we predict that the spontaneous patterns will be scale-free and universal, being independent of taxon and mode of locomotion. To test this hypothesis, we examined the activity patterns of the European honeybee, and multiple species of noctuid moth, tethered to flight mills and exposed to minimal external cues. We also reanalysed pre-existing data for Drosophila flies walking in featureless environments. Across these species, we found evidence of common scale-invariant properties in their movement patterns; pause and movement durations were typically power law distributed over a range of scales and characterized by exponents close to 3/2. Our analyses are suggestive of the presence of a pervasive scale-invariant template for locomotion which, when acted on by environmental cues, produces the movements with characteristic scales observed in nature. Our results indicate that scale-finite complexity as embodied, for instance, in correlated random walk models, may be the result of environmental cues overriding innate behaviour, and that scale-free movements may be intrinsic and not limited to 'blind' foragers as previously thought.Rothamsted research receives grant aided support from the Biotechnology and Biological Sciences Research Council. S.W. was funded jointly by a grant from BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative (grant nos. BB/I00097/1). A.J.P. was funded by a BBSRC Doctoral Training Partnership in Food Security awarded to K.W. and J.W.C. H.B.C.J. was funded by a BBSRC Quota studentship awarded to J.W.C. and J.K.

    Parametric polymorphism - universally

    Get PDF
    In the 1980s, John Reynolds postulated that a parametrically polymorphic function is an ad-hoc polymorphic function satisfying a uniformity principle. This allowed him to prove that his set-theoretic semantics has a relational lifting which satisfies the Identity Extension Lemma and the Abstraction Theorem. However, his definition (and subsequent variants) have only been given for specific models. In contrast, we give a model-independent axiomatic treatment by characterising Reynolds' definition via a universal property, and show that the above results follow from this universal property in the axiomatic setting

    Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees

    Get PDF
    Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards
    • …
    corecore