5,141 research outputs found

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Apnea, bradycardia and desaturation spells in premature infants: impact of a protocol for the duration of 'spell-free' observation on interprovider variability and readmission rates.

    Get PDF
    ObjectiveTo study the impact of implementing a protocol to standardize the duration of observation in preterm infants with apnea/bradycardia/desaturation spells before hospital discharge on length of stay (LOS) and readmission rates.Study designA protocol to standardize the duration of in-hospital observation for preterm infants with apnea, bradycardia and desaturation spells who were otherwise ready for discharge was implemented in December 2013. We evaluated the impact of this protocol on the LOS and readmission rates of very low birth weight infants (VLBW). Data on readmission for apnea and an apparent life-threatening event (ALTE) within 30 days of discharge were collected. The pre-implementation epoch (2011 to 2013) was compared to the post-implementation period (2014 to 2016).ResultsThere were 426 and 368 VLBW discharges before and after initiation of the protocol during 2011 to 2013 and 2014 to 2016, respectively. The LOS did not change with protocol implementation (66±42 vs 64±42 days before and after implementation of the protocol, respectively). Interprovider variability on the duration of observation for apneic spells (F-8.8, P=0.04) and bradycardia spells (F-17.4, P<0.001) decreased after implementation of the protocol. The readmission rate for apnea/ALTE after the protocol decreased from 12.1 to 3.4% (P=0.01).ConclusionImplementing an institutional protocol for VLBW infants to determine the duration of apnea/bradycardia/ desaturation spell-free observation period as recommended by the American Academy of Pediatrics clinical report did not prolong the LOS but effectively reduced interprovider variability and readmission rates

    Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees

    Get PDF
    Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards

    Increased gravitational force reveals the mechanical, resonant nature of physiological tremor

    Get PDF
    Human physiological hand tremor has a resonant component. Proof of this is that its frequency can be modified by adding mass. However, adding mass also increases the load which must be supported. The necessary force requires muscular contraction which will change motor output and is likely to increase limb stiffness. The increased stiffness will partly offset the effect of the increased mass and this can lead to the erroneous conclusion that factors other than resonance are involved in determining tremor frequency. Using a human centrifuge to increase head-to-foot gravitational field strength, we were able to control for the increased effort by increasing force without changing mass. This revealed that the peak frequency of human hand tremor is 99% predictable on the basis of a resonant mechanism. We ask what, if anything, the peak frequency of physiological tremor can reveal about the operation of the nervous system.This work was funded by a BBSRC Industry Interchange Award to J.P.R.S. and R.F.R. C.J.O. was funded by BBSRC grant BB/I00579X/1. C.A.V. was funded by A∗Midex (Aix-Marseille Initiative of Excellence

    Fire and climate: contrasting pressures on tropical Andean timberline species

    Get PDF
    Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA Geography, College of Life & Environmental Sciences; University of Exeter; Exeter UK Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA CEPSAR; The Open University; Milton Keynes UK Instituto de Geología; Universidad Nacional Autónoma de México; Ciudad Universitaria; Mexico City Mexico Department of Forest and Soil Sciences; University of Natural Resources and Life Sciences Vienna; Vienna Austria Department of Biology and Center for Energy; Environment and Sustainability; Wake Forest University; Winston Salem NC USACopyright © 2015 John Wiley & Sons Ltd.Aim: The aim was to test competing hypotheses regarding migration of the Andean timberline within the last 2000 years. Location: The upper forest limit in Manu National Park, Peru. Methods: A randomized stratified design provided 21 soil profiles from forested sites just below the timberline, 15 from puna grassland sites just above the timberline and 15 from the transitional habitat at the puna–forest boundary. From each profile a surface sample (hereafter modern) and a sample from the base of the organic horizon (hereafter historical) were collected. Pollen and charcoal were analysed from the modern and historical layers of the 51 soil profiles. A chronological framework was provided by 24 14C dates. Data were ordinated as modern and historical groups and the temporal trends illustrated by Procrustes rotation. Results: The organic layer from the soil profiles represented the last 600–2000 years. Fire was much more abundant in all habitat types (puna, transitional and forested) in the modern compared with the historical groups. Samples that had historically been in puna just above the timberline showed encroachment by woody species. Samples that had been forested were still classified as forest but their composition had become more transitional. Sites that were transitional appeared to represent a new or expanded class of sites that was far less abundant historically. Main conclusions: Our results are consistent with ongoing warming causing an upslope migration of species, although not necessarily of the timberline. Weedy fire-tolerant species are spreading upslope, creating a transitional forest, softening the boundary between forest and puna. Simultaneously, fire introduced to improve grazing outside the park has increasingly penetrated the forest and is causing the upper timberline to shift towards more fire-tolerant and weedy species. Consequently, both the form of the ecotone between forest and grassland and the species composition of these forests is changing and is expected to continue to change, representing a shifting baseline for what is considered to be natural.Gordon and Betty Moore Foundation Andes-to-Amazon programmeBlue Moon FundNational Science Foundatio

    Parametric polymorphism - universally

    Get PDF
    In the 1980s, John Reynolds postulated that a parametrically polymorphic function is an ad-hoc polymorphic function satisfying a uniformity principle. This allowed him to prove that his set-theoretic semantics has a relational lifting which satisfies the Identity Extension Lemma and the Abstraction Theorem. However, his definition (and subsequent variants) have only been given for specific models. In contrast, we give a model-independent axiomatic treatment by characterising Reynolds' definition via a universal property, and show that the above results follow from this universal property in the axiomatic setting

    Mirror neuron activation in children with developmental coordination disorder: A functional MRI study.

    Get PDF
    The aim of this study was to reveal cortical areas that may contribute to the movement difficulties seen in children with Developmental Coordination Disorder (DCD). Specifically, we hypothesized that there may be a deficit in the mirror neuron system (MNS), a neural system that responds to both performed and observed actions. Using functional MRI, 14 boys with DCD (x¯=10.02 years±1.28, range=8.33-11.17 years) and 12 typically developing controls (x¯=10.10 years±1.16, range=8.02-12 years) were scanned observing, executing and imitating a finger sequencing task using their right hand. Cortical activations of mirror neuron regions, including posterior inferior frontal gyrus, ventral premotor cortex, anterior inferior parietal lobule and superior temporal sulcus were examined. Children with DCD had decreased cortical activation mirror neuron related regions, including the precentral gyrus and inferior frontal gyrus, as well as in the posterior cingulate and precuneus complex when observing the sequencing task. Region of interest analysis revealed lower activation in the pars opercularis, a primary MNS region, during imitation in the DCD group compared to controls. These findings provide some preliminary evidence to support a possible MNS dysfunction in children with DCD

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure
    corecore