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Abstract

The movement of organisms is subject to a multitude of influences of widely varying character: from the bio-mechanics of
the individual, over the interaction with the complex environment many animals live in, to evolutionary pressure and energy
constraints. As the number of factors is large, it is very hard to build comprehensive movement models. Even when
movement patterns in simple environments are analysed, the organisms can display very complex behaviours. While for
largely undirected motion or long observation times the dynamics can sometimes be described by isotropic random walks,
usually the directional persistence due to a preference to move forward has to be accounted for, e.g., by a correlated
random walk. In this paper we generalise these descriptions to a model in terms of stochastic differential equations of
Langevin type, which we use to analyse experimental search flight data of foraging bumblebees. Using parameter estimates
we discuss the differences and similarities to correlated random walks. From simulations we generate artificial bumblebee
trajectories which we use as a validation by comparing the generated ones to the experimental data.
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Introduction

Foraging Animals
The characteristics of the movement of animals play a key role

in a variety of ecologically relevant processes, from foraging and

group behaviour of animals [1] to dispersal [2,3] and territoriality

[4]. Studying the behaviour of animals, simple random walk

models have been proven effective in describing irregular paths

[5]. While the first studies on random paths of organisms focused

on uncorrelated step sequences [6], in many cases of studies of

animal behaviour the directional persistence of the animals

suggested a modelling in terms of correlated random walks

(CRWs) [7,8]. In many complex environments an intermittent

behaviour of animals is observed. In these cases an animal switches

either randomly or in reaction to its environment between

different movement patterns. The mechanisms which generate,

and the factors which influence this switching behaviour have been

shown to be important in understanding and modelling compli-

cated animal paths [9–12]. While there is a source of switching

between free flight and food inspections in the experiment we

analyse [13], here we concentrate on the former as detailed below.

With no clear indication of additional intermittency, we will focus

on non-intermittent models in the following.

CRW/Reorientation Model
The planar horizontal movement of an animal is often

approximated by a sequence of steps: an angle a(t) describes the

current direction of movement in a fixed coordinate frame, while

the step length l(t) determines the distance travelled during a time

step. The direction a(t), often determined by a specific front

direction of the animal, changes each time step by a random

turning angle b(t). The description of the dynamics in a co-moving

frame, i.e., via the turning angle, turned out to be most useful for

analysis of persistent animal movement [7,8]. In many cases b(t) is

drawn independently and identically distributed (i.i.d.) from a

wrapped normal distribution or a von Mises distribution [14,15]

for each time step, giving rise to a persistence in direction

depending on how strongly the distribution is concentrated around

0. Usually the step length is taken to be either constant or it is

drawn i.i.d. from some distribution. The step length can either be

the result of a constant speed and a variable time step or (as in our

case below) of a constant time step Dt and a variable speed s(t).

This class of models can generate a variety of different

dynamics. Two special cases with a uniform distribution for b
and a fixed time step Dt are the standard Gaussian random walk

for step lengths l(t)~jz(t)j where z is normally distributed and

Lévy flights for power-law tails in the step lengths distributions

(l(t)*l{m for 1vmƒ3 and lwl0). Related to Lévy Flights, but

using a time step proportional to the step length, are Lévy Walks,

which have been of interest as candidates for optimal search

behaviour of foraging animals. They have been studied analyti-

cally [16], by simulations [10,17], and many experimental data

sets have been statistically analysed to determine whether Lévy

Walks are suitable to describe the movement of animals (see, e.g.,

[18–22]).

As Lévy-type models show anomalous diffusive behaviour, in

contrast to models with a finite variance of the step length

distribution and a fixed time step Dt, only the latter are included in

the definition of correlated random walks which are also called

reorientation models in the context of animal movement. Apart from
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pathological cases, CRWs are diffusive in the long time limit

according to the central limit theorem.

The estimation of the tortuosity of a trajectory is intimately

connected to the distributions of the turning angle and speed

[8,14,23]. The relevance of the turning angle distribution for

foraging efficiencies when searching in random environments has

been analysed, e.g., in [24].

Generalisation of the Model
In the following we will present a generalisation of the CRW

above, which we then use to analyse bumblebee flight data. Given

movement data with a constant time step Dt, the step length is

determined by the speed s(t)~jv(t)j of the animal. As we will be

looking at a flying insect in a data recording using a small time

step, we may expect to have a deterministic persistence due to the

animals momentum. Additionally, the above CRW model assumes

that s and b are drawn i.i.d. which is sensible if Dt is large enough.

However, for small time steps it cannot be excluded that the

decision of the animal to turn left or right takes longer than the

time step, which can correlate the turning angles b(t) over a

number of time steps. To allow for these possibilities we therefore

model the changes in speed and turning angle via two coupled

generalized Langevin equations,

db

dt
(t)~h(b(t),s(t))z~jjs(t) ð1Þ

ds

dt
(t)~g(b(t),s(t))zy(t), ð2Þ

where we distinguish between the deterministic parts h and g

and stochastic terms y and ~jjs (whose speed dependency will be

discussed in the Results section). We assume that the noise

processes are stationary with auto-correlation functions which may

be non-trivial, and we make no further assumptions for the shape

of their stationary distributions. While Eqs. (1,2) represent a time-

continuous description, the turning angle b still yields the change

of a according to our fixed time resolution Dt. That is, b(t) relates

to a time-continuous angular velocity c of a via

b(t)~

ð t

t{Dt

c(t)dt. The animals’ position r(t)~(x(t),y(t)) is then

given by dx=dt~s cos (a(t)), dy=dt~s sin (a(t)) and da=dt~c(t).
Not having experimental access to c, the numerical analysis is

done with time-discrete data where the measured turning angle is

given by b(t)~a(t){a(t{Dt)~ (v(t),v(t{Dt)), where

v(t)~(r(tzDt){r(t))=Dt at times t~nDt, n[N.

Application to Experimental Data
Analysing measured movement data of animals in their natural

habitat is intricate due to a variety of factors which may influence

the animal’s behaviour, ranging from heterogeneous food source

distributions [25–27] and predation threats [13,28] to individual

differences in behaviour within a population [2,3]. Here we

analyse data obtained from a small scale laboratory experiment in

which single bumblebees forage in an artificial flight arena [29].

The set-up is shown in Fig. 1 together with part of a typical

trajectory of a bumblebee on its search for food. Each bumblebee

can forage on an artificial flower carpet which is positioned on one

of the walls of the arena. In this paper we are not interested in the

behaviour resulting from the interaction with the flowers which

has been studied in detail in [13]. Instead we only examine the

search flights away from the flower carpet. (See section Materials

and Methods for details.) We use our generalised stochastic model

(Eqs. (1,2)) to describe these flights and to examine in which ways

the behaviour deviates from a simple CRW model. Here we will

focus on the horizontal movements. By neglecting the slower

vertical movements, which are of more interest when analysing the

starting and landing behaviour near flowers, we thus restrict

ourselves to a two-dimensional model.

Results and Discussion

Estimation of Drift Terms
Given the experimental data, we start determining the unknown

parameters in our model by first estimating the deterministic parts

h(b,s) and g(b,s) of the Langevin equation. This is done by

numerical estimation [30–33] of the components of the drift vector

field (drift coefficients) D1(b,s)~(g(b,s),h(b,s))T of the corre-

sponding Fokker-Planck equation via

D1(X )~ lim
t?0

1

t
v

*
X (tzt){Xw

���*
X (t)&X

ð3Þ

where and v:w is the time average over the time series
*
X

conditioned on
*
X (t)&X , where

*
X is assumed to be stationary (for

a detailed discussion see [32]). The estimation of the drift terms is

based on a Markov approximation: only those parts of the

Figure 1. Sketch of the foraging arena together with part of the
flight trajectory of a single bumblebee. The bumblebees forage
on a grid of artificial flowers on one wall of the box. While being on the
landing platforms, the bumblebees have access to food supply. Of
interest in this paper is the movement when the bumblebee is not near
the flower wall.
doi:10.1371/journal.pone.0059036.g001

Stochastic Modelling of Bumblebee Flights
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dynamics which match to a Markovian description in the state

space variables b and s have their deterministic terms reflected in

D1(X ). Any other parts of the flight dynamics – stochastic as well

as deterministic but not Markovian in b and s – are captured by

the stochastic terms of Eqs. (1,2). Figure 2 shows the drift vector

field, with normalised lengths of the vectors for better visibility.

The nearly horizontal vectors show, that the drift quickly pushes

the turning angle b towards 0, while the dynamics in the speed s is

much slower. As the cross-dependencies of h(b,s) on s and of

g(b,s) on b are weak, we can neglect them in our model. Since

vector fields are hard to interpret, we will look at the projections in

the following.

Examining the drift h(b) of the turning angle in Fig. 3 reveals

that the drift term seems linear in b — indeed we find numerically

that its slope {k matches exactly to a decay of the turning angle to

0 in a single observation time step Dt by k&1=Dt, disregarding the

noise term. This means that by integrating Eq. (1) over a time Dt

and approximating the drift h(b) for small Dt byÐ tzDt

t
h(b(t))dt&h(b(t))Dt, we have

b(tzDt){b(t)~{kb(t)Dtz

ð tzDt

t

~jjs(t)dt

~{b(t)z

ð tzDt

t

~jjs(t)dt :

ð4Þ

With js(t) : ~
Ð t

t{Dt
~jjs(t)dt and Eq. (4), the time scale separation

in the b-Langevin equation due to the very fast relaxation means

that we can simplify Eqs. (1,2) to:

b(t)~js(t) ð5Þ

ds

dt
(t)~g(s(t))zy(t): ð6Þ

While this reduction of the turning angle dynamics from db=dt

to b bears similarity to a simple reorientation model, the turning

angles are still correlated and speed-dependent, as we will see

below.

The speed drift g(s) displayed in Fig. 4 shows that the

deterministic part of the speed-Langevin equation alone would

have a stable fixed point around s0~0:27m=s. Comparing the

slopes above and below s0 reveals that for svs0 the force towards

s0 is stronger than for sws0. This is biologically plausible if one

interprets s0 as a preferred speed: if the bumblebee is slower it

Figure 2. Normalised drift vector field D1(b,s) corresponding to
the deterministic terms of the Langevin equations (Eqs. (1,2))
estimated via Eq. (3). The regular structure shows the quick
relaxation to small angles, and the absence of strong cross-dependen-
cies in the drift, i.e., the b-dependence of the s-component of the
vectors is weak and vice versa.
doi:10.1371/journal.pone.0059036.g002

Figure 3. Drift coefficient of turning angle. The deterministic drift
h(b) as estimated from data (black) is in good approximation (red) linear
in b. (95% confidence intervals in grey).
doi:10.1371/journal.pone.0059036.g003

Figure 4. Drift coefficient of speed. The experimental deterministic
drift coefficient g(s) (black, 95% confidence intervals in grey) has been
approximated by piecewise linear functions from one to three pieces
(blue,green,cyan). The data shows the tendency to quickly increase low
speeds. However, speeds above 0.27 m/s decrease more slowly, except
for the rare high speeds.
doi:10.1371/journal.pone.0059036.g004

Stochastic Modelling of Bumblebee Flights
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accelerates, but if it is faster it does not rush to decelerate as it

would give up the energy spent to reach a high velocity. For very

high velocities (over 0.55 m/s) the slope of g(s) increases again.

This might be caused by the limited space available to the

bumblebee in the flight arena. For our model we approximated

g(s) by a piecewise linear function:

g(s)&(s{s0)|
{d1 for svs0

{d2 for s§s0

�
, ð7Þ

where d1wd2w0. As the very high velocities are rare, it made no

difference in our model whether we used Eq. (7) or a piecewise

linear function with three pieces.

Velocity-Dependent Angle-Noise and Noise Auto-
Correlations

What we did not specify before was that the turning angle

distribution may depend on the speed of the bumblebees. Given

that the force a bumblebee can use to change directions is finite,

the largest turning angles have to be smaller when flying with high

speeds (see Fig. 5). This is consistent with the absence of

simultaneously having high speed and large turning angle in the

data - as is evident, e.g., from the data gaps in Fig. 2. However,

animals can counteract this geometric dependence by varying the

forces used for changing direction with the speed. We approxi-

mated the distribution for the turning angles for each speed s by a

normal distribution. This approximation works best for low

speeds. While there are some deviations for high speeds, it was not

possible to reliably fit a better model due to the limited amount of

data available. Figure 6 shows how its standard deviation sb

depends on the current speed. sb decreases with increasing speed,

however it does not decay to 0 as a simple geometric model would

predict (see Materials and Methods below).

Instead sb(s) decays roughly exponentially to a constant offset.

We therefore model the turning angles as speed-dependent noise

with a wrapped normal distribution [14,15]: js(t)*N (0,sj(s))
with sj(s)~c1e{c2szc3. This offset could either be an effect of the

boundedness of the flight arena, since the bumblebee has to turn

more often to avoid walls when flying fast. Or it could be that the

bumblebees use stronger forces for turning during fast flights to

maintain their manoeuvrability. It would be interesting to examine

free-flight data to check for the cause. In other models in which the

momentum of the animal is not important for the observed

directional persistence, this cross-dependence is often neglected

[7].

For the two stochastic parts of the Langevin equations, we

estimated the normalised auto-correlation functions from the data.

The turning angle auto-correlation is approximated by a steep

power-law as seen in Fig. 7, which in this case is preferable to the

alternative fit by a simple exponential decay. By subtraction of our

approximation for the deterministic term g(s) from the observed

speed changes ds=dt in Eq. (6) we estimated the distribution and

auto-correlation of the noise term y(t)~ds(t)=dt{g(s(t)). In

Figure 5. Schematics of the dependence of b on speed s.
Assuming a constant maximal force (circle) available to the bumblebee
to accelerate during a time step, the distribution of the turning angle b
depends on the previous speed st{1~jvt{1j. Illustrated is the change
from large angles for low speeds (left) to a stronger concentration
around 00 for higher speeds (right).
doi:10.1371/journal.pone.0059036.g005

Figure 6. Log-log plot demonstrating the speed dependence of
the turning angle distribution. The standard-deviation sb of the
turning angle is shown as a function of the speed as estimated from
data (black) and approximated by a shifted power-law (green) and a
shifted exponential (blue). 95% confidence intervals for sb based on a

x2-distribution are shown in grey.
doi:10.1371/journal.pone.0059036.g006

Figure 7. Log-log plot of auto-correlation of turning angles b.
The experimental data (black crosses) together with an exponential
(magenta) and a power-law (blue) fit is shown with the large-lag
standard error (grey). The green circles show the auto-correlation
extracted from the simulated data.
doi:10.1371/journal.pone.0059036.g007

Stochastic Modelling of Bumblebee Flights

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e59036



order not to overestimate the noise term, additive discretization

errors of an approximate size of serror~Dx=Dt2 due to the finite

resolution Dx~10{3m of the cameras have been accounted for,

giving the variance s2
y~s2

ynoisy{s2
error. The noise term y(t) is well

approximated by Gaussian noise with an auto-correlation function

acfe{e
y (t)~ae{l1tz(1{a)e{l2t (see Fig. 8). While an auto-

correlation function of the shape of

acf
p{p
y (t)~b(tz1){p1z(1{b)(tz1){p2 can be exluded, a

difference between an exponential and a power-law

acf
e{p
y (t)~ce{l3tz(1{c)(tz1){p2 is not significantly worse

than acfe{e
y . For our model we chose the simple difference of

exponentials acfe{e.

As the observed anti-correlation between delays of

0:1 swtw0:3 s happens on a time scale which is too short to be

an effect of the boundedness of the experiment or of residual

effects of the presence of the foraging wall [13], it is unclear where

the anti-correlation comes from. One could speculate that it might

be the result of a stabilising mechanism in the bumblebee

dynamics.

Validation
Given all the parameters of the full model (see Materials and

Methods) estimated by minimizing the mean squared errors, we

used them to generate artificial bumblebee trajectories, as follows:

We simulated the dynamics using an Euler-Maruyama scheme

with noise terms js(t),y(t). In rare cases where the Gaussian noise

y(t) would lead to a negative speed despite the positive drift g(s)
for svs0, we enforce a non-negative speed by setting s(t)~0. We

correlated the noise terms in advance by modifying their power

spectral density in the following way: we take uncorrelated noise of

the wanted distribution, multiply its Fourier transform with the

Figure 8. Auto-correlation of the non-deterministic speed
changes y(t). The auto-correlation function of y(t)~ds(t)=dt{g(s(t))
estimated from the experimental data (dots) with two times the large-
lag standard error (grey) and three fitted approximations: difference of
2 exponentials (red), difference of 2 power-laws (green), difference of
exponential and power-law (blue). The outlier at t~0:02 s is a
discretization artifact due to the finite resolution of the data (see [40]).
doi:10.1371/journal.pone.0059036.g008

Figure 9. Simulated trajectory of a bumblebee. The complete
model (Eqs. (5,6)) is simulated for 200 s (~105 time steps) with an Euler-
Maruyama scheme using already correlated noise for j and y.
doi:10.1371/journal.pone.0059036.g009

Figure 10. Comparison of the speed distributions. The green
(dashed) line shows the probability density pdf(s) extracted from the
simulated data, the black (solid) line shows the experimental data of all
bumblebees (&45000 data points).
doi:10.1371/journal.pone.0059036.g010

Figure 11. Auto-correlation of bumblebee speed. The green
(dashed) line shows the auto-correlation extracted from the simulated
data, the black (solid) line from the experimental data with two times
the large-lag standard error (grey).
doi:10.1371/journal.pone.0059036.g011

Stochastic Modelling of Bumblebee Flights
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root of the desired power spectral density corresponding to our

approximate auto-correlation function and then transform back

[34]. To deal with the speed dependence of the turning angle noise

js(t) we first correlate Gaussian noise and afterwards scale with

sb(s) at each time step in the integration scheme. While this does

not reproduce the auto-correlation of the turning angle exactly,

the error made is less than the errors from the estimation of acfb.

A sample trajectory of a bumblebee simulated for 200 s using 105

time steps is shown in Fig. 9. Using the generated data we checked

the validity of the model by comparison to the experimental data

of all bumblebees.

Figure 10 compares the probability density function pdf(s) of

the speed extracted from the simulated data with the experimental

data. The auto-correlation functions of the speed and turning

angle are shown in Figures 11 and 7. Considering the number of

rough approximations we have made for constructing our model,

the agreement between simulation results and experimental data is

very good.

Summary
We generalised a reorientation model which is often used to

describe the correlated random walk of animals by explicitly

modelling accelerations via Langevin equations. Analysing move-

ment data from bumblebees, we extracted information on the

deterministic and stochastic terms of Eqs. (1,2). Simulations of our

model and comparison to the data have shown that the resulting

model agrees very well with the experimental data despite the

approximations we made for the model. With the estimation of the

turning angle drift h(b) we found that while the usual assumption

of i.i.d. turning angles is not valid in our case, the lack of a non-

trivial drift and the weak auto-correlation of js are consistent with

the usual reorientation model. However, our generalised model

exhibits significant differences in the non-trivial deterministic part

g(s) of the speed change ds=dt and the speed dependence of the

turning angles. In terms of active Brownian particle models

[35,36] we described the two-dimensional bumblebee movement

by a particle with a non-linear friction term g(s) depending and

acting only on the speed, driven by multiplicative coloured noise

with different correlations for the angle component and the speed

component of the velocity. While this combination of complica-

tions might make it difficult to treat the system analytically,

progress into this direction has been made [37,38]. We remark

that one could ignore the fast decaying auto-correlations of js and

y(t) if one is not interested in the dynamics for short times, thus

simplifying the model by using uncorrelated noise terms, since the

effect of the noise autocorrelations on the long time dynamics is

negligible.

Given that the experiment which yielded our data is rather

small and provided the bumblebees with an artificial environment,

it would be interesting to apply our new model to free-flying

bumblebees to reveal how much the results depend on the specific

set-up. This would clarify whether the flight behaviour seen in the

laboratory experiment survives as a flight mode for foraging in a

patch of flowers in an intermittent model, with an additional flight

mode for long flights between flower patches. The analysis of data

from other flying insects and birds by using our model could be

interesting in order to examine whether the piecewise linear nature

of the speed drift and the trivial drift of the turning angle are a

common feature. In view of understanding the small-scale bio-

mechanical origin of flight dynamics, our model might serve as a

reference point for any more detailed dynamical modelling. That

is, we would expect that any more microscopic model should

reproduce our dynamics after a suitable coarse graining over

relevant degrees of freedom.

Materials and Methods

Experimental Data
In this experiment 30 bumblebees ( Bombus terrestris) were trained

to forage individually in a roughly cubical flight arena with an

approximate side length of 0.75 m. Figure 1 shows a diagram of the

arena together with data from a typical flight path of a bumblebee.

The flight arena included a 4|4 grid of artificial flowers on one of

the walls. Each of the 16 flowers consisted of a landing platform, a

yellow square floral marker and a replenishing food source where

syrup was offered. For the analysis presented in this paper all data in

zones (7 cm|9 cm|9 cm) around the flowers has been removed in

order to analyse the search behaviour while foraging excluding the

interaction with food sources. The 3D flight trajectories of the

bumblebees were tracked by two cameras with a temporal

resolution of Dt~0:02 s. Each bumblebee was approximated as a

point mass with a spatial resolution of 0:1 cm: its position was

estimated by the arithmetic mean of all image pixels corresponding

to the bumblebee via background subtraction. In total &49000 data

points were used for the analysis. For individual bumblebees an

average of 51 search trajectories between flower zones have been

sampled and analysed. The thorax widths of the bumblebees have a

mean of 5:6 mm and a standard deviation of 0:4 mm.

For calculating auto-correlations small gaps in the time series

have been interpolated linearly. As the number of gaps was small

the correlations for short times were not affected, however, the

interpolation increased the usable data for long time delays.

Trajectories were split at larger gaps, e.g., when entering a flower

zone, to exclude correlations induced by flower visits.

For a discussion of the influence of the boundedness of the flight

arena and for the analysis of the foraging dynamics under varying

environmental conditions see [13]. More details on the experi-

mental setup can be found in [29,39].

Estimated Model Parameters
The full set of parameters estimated from the data set which was

used for the simulation is given here. For the deterministic drift of

the speed the change of slope is at s0~0:275 m=s while the slopes

are d1~0:16 and d2~0:06. The parameters for the standard

deviation sj(s) of the angle noise are c1~1260, c2~12 s=m,

c3~12:50 and its auto-correlation is given by

acfb(t)~(tz1){1:5476. The non-deterministic changes y(t) of

the speed are assumed to be normally distributed with standard

deviation sy~3:52 m=s
2

and auto-correlated according to

acfe{e
y (t) where a~1:44, l1~25:5 and l2~10:7.

Speed Dependence of Turning Angles
A simple model showing a dependence of the turning angles on

the speed (see Fig. 5) is given in the following. Assume that the

velocity of an animal changes at each time step Dt by an

acceleration vector which is given by a binormal i.i.d. random

vector with variance s2 in both directions. The turning angle b

between vt and vtzDt then depends on the quotient gt : ~st=(
ffiffiffi
2
p

s)
between the former speed st~jvtj and the noise strength s. By

changing to the comoving frame of the animal and integrating out

stzDt the distribution r(b) of the turning angle is given by:

r(b)~
e{g2

2p
z

e{g2 sin2 (b)

2
ffiffiffi
p
p g cos (b)(1zerf(g cos (b)))

Stochastic Modelling of Bumblebee Flights
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for {pƒbƒp. With vanishing speed s(t)~g(t)~0 the first

term gives a uniform distribution as expected, and for g(t)?? the

distribution sharply peaks at b~0 with its variance sb approach-

ing 0, similar to the behaviour of the simpler von Mises

distribution. As the experimental bumblebee data does not show

a decay to sb~0 but to a finite value (see Fig. 6), this simple model

does not hold: therefore the accelerations have to be modelled as

speed-dependent.
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74: 020102–4.

10. Plank MJ, Codling EA (2009) Sampling rate and misidentification of Lévy and
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