742 research outputs found
Spatial but not verbal cognitive deficits at age 3 years in persistently antisocial individuals
Previous studies have repeatedly shown verbal intelligence deficits in adolescent antisocial individuals, but it is not known whether these deficits are in place prior to kindergarten or, alternatively, whether they are acquired throughout childhood. This study assesses whether cognitive deficits occur as early as age 3 years and whether they are specific to persistently antisocial individuals. Verbal and spatial abilities were assessed at ages 3 and 11 years in 330 male and female children, while antisocial behavior was assessed at ages 8 and 17 years. Persistently antisocial individuals (N = 47) had spatial deficits in the absence of verbal deficits at age 3 years compared to comparisons (N = 133), and also spatial and verbal deficits at age 11 years. Age 3 spatial deficits were independent of social adversity, early hyperactivity, poor test motivation, poor test comprehension, and social discomfort during testing, and they were found in females as well as males. Findings suggest that early spatial deficits contribute to persistent antisocial behavior whereas verbal deficits are developmentally acquired. An early-starter model is proposed whereby early spatial impairments interfere with early bonding and attachment, reflect disrupted right hemisphere affect regulation and expression, and predispose to later persistent antisocial behavior
Footprints and human evolution: Homeostasis in foot function?
Human, and hominin tracks, occur infrequently within the geological record as rare acts of sedimentary preservation. They have the potential, however, to reveal important information about the locomotion of our ancestors, especially when the tracks pertain to different hominin species. The number of known track sites is small and in making inter-species comparisons, one has to work with small track populations that are often from different depositional settings, thereby complicating our interpretations of them. Here we review several key track sites of palaeoanthropological significance across one of the most important evolutionary transitions (Australopithecus to Homo) which involved the development of anatomy and physiology better-suited to endurance running and walking. The sites include the oldest known hominin track site at Laetoli (3.66 Ma; Tanzania) and those at Ileret (1.5 Ma; Kenya). Tracks from both sites are compared with modern tracks made by habitually unshod individuals using a whole-foot analysis. We conclude that, contrary to some authors, foot function has remained relatively unchanged, perhaps experiencing evolutionary homeostasis, for the last 3.66 Ma. These data suggest that the evolutionary development of modern biomechanical locomotion pre-dates the earliest human tracks and also the transition from the genus Australopithecus to Homo
Thermal compression of two-dimensional atomic hydrogen to quantum degeneracy
We describe experiments where 2D atomic hydrogen gas is compressed thermally
at a small "cold spot" on the surface of superfluid helium and detected
directly with electron-spin resonance. We reach surface densities up to 5e12
1/cm^2 at temperatures of approximately 100 mK corresponding to the maximum 2D
phase-space density of about 1.5. By independent measurements of the surface
density and its decay rate we make the first direct determination of the
three-body recombination rate constant and get the value of 2e-25 cm^4/s for
its upper bound, which is an order of magnitude smaller than previously
reported experimental results.Comment: 4 pages, 4 postscript figures, bibliography (.bbl) file, submitted to
PR
Thermal compression of atomic hydrogen on helium surface
We describe experiments with spin-polarized atomic hydrogen gas adsorbed on
liquid He surface. The surface gas density is increased locally by
thermal compression up to cm at 110 mK. This
corresponds to the onset of quantum degeneracy with the thermal de-Broglie
wavelength being 1.5 times larger than the mean interatomic spacing. The atoms
were detected directly with a 129 GHz electron-spin resonance spectrometer
probing both the surface and the bulk gas. This, and the simultaneous
measurement of the recombination power, allowed us to make accurate studies of
the adsorption isotherm and the heat removal from the adsorbed hydrogen gas.
From the data, we estimate the thermal contact between 2D hydrogen gas and
phonons of the helium film. We analyze the limitations of the thermal
compression method and the possibility to reach the superfluid transition in 2D
hydrogen gas.Comment: 20 pages, 11 figure
Short time evolved wave functions for solving quantum many-body problems
The exact ground state of a strongly interacting quantum many-body system can
be obtained by evolving a trial state with finite overlap with the ground state
to infinite imaginary time. In this work, we use a newly discovered fourth
order positive factorization scheme which requires knowing both the potential
and its gradients. We show that the resultaing fourth order wave function
alone, without further iterations, gives an excellent description of strongly
interacting quantum systems such as liquid 4He, comparable to the best
variational results in the literature.Comment: 5 pages, 3 figures, 1 tabl
Monte Carlo Calculations for Liquid He at Negative Pressure
A Quadratic Diffusion Monte Carlo method has been used to obtain the equation
of state of liquid He including the negative pressure region down to the
spinodal point. The atomic interaction used is a renewed version (HFD-B(HE)) of
the Aziz potential, which reproduces quite accurately the features of the
experimental equation of state. The spinodal pressure has been calculated and
the behavior of the sound velociy around the spinodal density has been
analyzed.Comment: 10 pages, RevTex 3.0, with 4 PostScript figures include
Recommended from our members
Review and assessment of latent and sensible heat flux accuracy over the global oceans
For over a decade, several research groups have been developing air-sea heat flux information over the global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at various spatial and temporal scales (from daily upwards). The study is performed within the European Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is to meet the recommendations and requirements expressed by various international programs such as the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The analysis is based on the use of daily averaged LHF and SHF and the asso- ciated bulk variables derived from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products indicate that all of them exhibit similar space and time patterns. However, they also reveal significant differences in magnitude in some specific regions such as the western ocean boundaries during the Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and sea temperature differences (for SHF). Further quality investigations are performed through comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting statistics are used to assess the error of each OHF product. Consideration of error correlation between products and observations (e.g., by their assimilation) is also given. This reveals generally high noise variance in all products and a weak signal in common with in situ observations, with some products only slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the ice-free global ocean on a 0.25° × 0.25° grid. The accuracy of this heat multiproduct, determined from comparisons with mooring data, is greater than for any individual product. It is used as a reference for the anomaly characterization of each individual OHF product
External Validation of Equations that Use Demographic and Anthropometric Measurements to Predict Percent Body Fat
Objective: Numerous equation to predict percent body fat using demographics and anthropometrics have been published but external validation of these equations is limited. The objective of this study was to validate published equations that use anthropometrics for prediction of percent body fat using external data. Methods: Data were from the Visceral Fat, Metabolic Rate, and Coronary Heart Disease Risk I (VIM I) Study and the Fels Longitudinal Study (Fels). VIM I was conducted in a subset of subjects from the CARDIA study and included black and white adults 28–40 years (n = 392). Fels consisted of white participants 8–88 years (n = 1,044). Percent body fat assessed by dual X-ray absorptiometry (DXA) in these two studies was compared to results calculated using 13 equations from Stevens et al. and nine other published equations. Results: In general, the Stevens equations performed better than equations from other studies. For example, equation “I“ in women in VIM I, Fels adults, and Fels youth, R2 estimates were 0.765, 0.757 and 0.789, respectively. In men the estimates were 0.702 in VIM I, 0.822 in Fels adults and 0.905 in Fels youth. None of the results from the nine published equations showed R2 this high in corresponding groups. Conclusions: Our results indicate that several of the Stevens equations have external validity superior to that of nine other published equations among varying age groups, genders and races
Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
We report diffusion quantum Monte Carlo calculations of three-dimensional
Wigner crystals in the density range r_s=100-150. We have tested different
types of orbital for use in the approximate wave functions but none improve
upon the simple Gaussian form. The Gaussian exponents are optimized by directly
minimizing the diffusion quantum Monte Carlo energy. We have carefully
investigated and sought to minimize the potential biases in our Monte Carlo
results. We conclude that the uniform electron gas undergoes a transition from
a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1.
The diffusion quantum Monte Carlo results are compared with those from
Hartree-Fock and Hartree theory in order to understand the role played by
exchange and correlation in Wigner crystals. We also study "floating" Wigner
crystals and give results for their pair-correlation functions
Modeling of Photoionized Plasmas
In this paper I review the motivation and current status of modeling of
plasmas exposed to strong radiation fields, as it applies to the study of
cosmic X-ray sources. This includes some of the astrophysical issues which can
be addressed, the ingredients for the models, the current computational tools,
the limitations imposed by currently available atomic data, and the validity of
some of the standard assumptions. I will also discuss ideas for the future:
challenges associated with future missions, opportunities presented by improved
computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010,
Utrecht, the Netherlands, March 15-17 201
- …