145 research outputs found

    Soil and leaf mineral element contents in mediterranean vineyards: bioaccumulation and potential soil pollution

    Full text link
    The study reported here concerns the geochemical distributions of macro- and trace elements (including potentially toxic elements, PTEs) in the vineyard soils of Alcubillas, which is one of the oldest, albeit not world-renowned, wine-growing areas in La Mancha (Central Spain). Soil and leaf samples were analyzed by X-ray fluorescence spectrometry to ascertain the levels of various elements in the soil and the plant. The potential toxicity of the elements was assessed with regard to the development of the vineyard. Despite the fact that fertilizers and pesticides are employed in the vineyards in this area, the results showed that the levels of trace elements in the soil samples did not exceed the reference values according the pedogeochemical values for the region and Spain. This finding suggests that the study area is not polluted, and therefore, there are hardly any traces of anthropogenic contamination. The Biological Absorption Coefficient (BAC) was calculated to assess the assimilation of various elements from the soil to the leaves, and differences were found in the element absorption capacity of the vines. Some elements were not taken up by Vitis vinifera despite elements like Zr and Rb being present in relatively high concentrations in the soil. The production in these soils does not represent a threat to human health or the ecosystem, because the farmers in this area are extremely careful to preserve the environment and they only farm to achieve moderate yields of grapes per hectar

    Diversity of culturable nocardioform actinomycetes from wastewater treatment plants in Spain and their role in the biodegradability of aromatic compounds

    Full text link
    [EN] Currently, municipal and industrial wastewater treatment plants (WWTPs) are mainly focusing on reduction of biological oxygen demand and on the removal of nutrients. However, there are microorganisms that interfere with the process. In this environment, there is a large diversity of microorganisms that have not been studied in detail and that could provide real and practical solutions to the foaming problems. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest because they are known for producing secondary metabolites as well as chemically diverse compounds and for their capacity to degrade recalcitrant pollutants. Three different media were chosen to isolate actinomycetes from 28 WWTPs in Spain. A total of 189 activated sludge samples were collected; 126 strains were isolated and identified to belong to 1 suborder, i.e. Corynebacterineae, and 7 genera, i.e. Corynebacterium, Dietzia, Gordonia, Mycobacterium, Rhodococcus, Tsukamurella and Williamsia. Furthermore, 71 strains were capable of biodegrading at least 1 aromatic product, and that 27 of them amplified for catA gene. The results of this research help us understand the complexity of the foam-forming microbial populations in Spain and it shows that WWTPs can be a good source of microorganisms that can degrade phenol or naphthalene.This work was supported by grants from Entidad Publica de Saneamiento de Aguas Residuales (EPSAR) de la Comunitat Valenciana.Soler Hernández, A.; García Hernández, J.; Zornoza-Zornoza, AM.; Alonso Molina, JL. (2017). Diversity of culturable nocardioform actinomycetes from wastewater treatment plants in Spain and their role in the biodegradability of aromatic compounds. Environmental Technology. 39(2):172-181. https://doi.org/10.1080/09593330.2017.1296897S17218139

    miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk

    Get PDF
    Myelofibrosis (MF) occurs as part of the natural history of polycythemia vera (PV) and essential thrombocythemia (ET), and remarkably shortens survival. Although JAK2V617F and CALR allele burden are the main transformation risk factors, inflammation plays a critical role by driving clonal expansion toward end-stage disease. NF-κB is a key mediator of inflammation-induced carcinogenesis. Here, we explored the involvement of miR-146a, a brake in NF-κB signaling, in MPN susceptibility and progression. rs2910164 and rs2431697, that affect miR-146a expression, were analyzed in 967 MPN (320 PV/333 ET/314 MF) patients and 600 controls. We found that rs2431697 TT genotype was associated with MF, particularly with post-PV/ET MF (HR = 1.5; p < 0.05). Among 232 PV/ET patients (follow-up time=8.5 years), 18 (7.8%) progressed to MF, being MF-free-survival shorter for rs2431697 TT than CC + CT patients (p = 0.01). Multivariate analysis identified TT genotype as independent predictor of MF progression. In addition, TT (vs. CC + CT) patients showed increased plasma inflammatory cytokines. Finally, miR-146a−/− mice showed significantly higher Stat3 activity with aging, parallel to the development of the MF-like phenotype. In conclusion, we demonstrated that rs2431697 TT genotype is an early predictor of MF progression independent of the JAK2V617F allele burden. Low levels of miR-146a contribute to the MF phenotype by increasing Stat3 signaling

    Outburst activity in comets: II. A multi-band photometric monitoring of comet 29p/Schwassmann-Wachmann 1

    Get PDF
    We have carried out a continuous multi-band photometric monitoring of the nuclear activity of comet 29P/Schwassmann-Wachmann 1 from 2008 to 2010. Our main aim has been to study the outburst mechanism on the basis of a follow-up of the photometric variations associated with the release of dust. We used a standardized method to obtain the 10 arc-sec nucleus photometry in the V, R, and I filters of the Johnson-Kron-Cousins system, being accurately calibrated with standard Landolt stars. Production of dust in the R and I bands during the 2010 Feb. 3 outburst has been also computed. We conclude that the massive ejection of large (optically-thin) particles from the surface at the time of the outburst is the triggering mechanism to produce the outburst. Ulterior sublimation of these ice-rich dust particles during the following days induces fragmentation, generating micrometer-sized grains that increase the dust spatial density to produce the outburst in the optical range due to scattering of sun light. The material leaving the nucleus adopts a fan-like dust feature, formed by micrometer-sized particles that are decaying in brightness as it evolved outwards. By analyzing the photometric signal measured in a standardized 10-arcsec aperture using the Phase Dispersion Minimization technique we have found a clear periodicity of 50 days. Remarkably, this value is also consistent with an outburst frequency of 7.4 outbursts/year deduced from the number of outbursts noticed during the effective observing time.Comment: 19 pages, 3 Tables, and 6 figure

    First bounds on the high-energy emission from isolated Wolf-Rayet binary systems

    Get PDF
    High-energy gamma-ray emission is theoretically expected to arise in tight binary star systems (with high mass loss and high velocity winds), although the evidence of this relationship has proven to be elusive so far. Here we present the first bounds on this putative emission from isolated Wolf-Rayet (WR) star binaries, WR 147 and WR 146, obtained from observations with the MAGIC telescope.Comment: (Authors are the MAGIC Collaboration.) Manuscript in press at The Astrophysical Journal Letter

    Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco

    Get PDF
    The nearby dwarf spheroidal galaxy Draco with its high mass to light ratio is one of the most auspicious targets for indirect dark matter searches. Annihilation of hypothetical DM particles can result in high-energy gamma-rays, e.g. from neutralino annihilation in the supersymmetric framework. With the MAGIC telescope a search for a possible DM signal originating from Draco was performed during 2007. The analysis of the data results in a flux upper limit of 1.1x10^-11 photons cm^-2 sec^-1 for photon energies above 140 GeV, assuming a point like source. Furthermore, a comparison with predictions from supersymmetric models is given. While our results do not constrain the mSUGRA phase parameter space, a very high flux enhancement can be ruled out.Comment: Accepted for publication by Astrophysical Journa

    Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC

    Get PDF
    The paper describes an application of the tree classification method Random Forest (RF), as used in the analysis of data from the ground-based gamma telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to be discriminated against a dominating background of hadronic cosmic-ray particles. We describe the application of RF for this gamma/hadron separation. The RF method often shows superior performance in comparison with traditional semi-empirical techniques. Critical issues of the method and its implementation are discussed. An application of the RF method for estimation of a continuous parameter from related variables, rather than discrete classes, is also discussed.Comment: 16 pages, 8 figure

    Systematic search for VHE gamma-ray emission from X-ray bright high-frequency BL Lac objects

    Get PDF
    All but three (M87, BL Lac and 3C 279) extragalactic sources detected so far at very high energy (VHE) gamma-rays belong to the class of high-frequency peaked BL Lac (HBL) objects. This suggested to us a systematic scan of candidate sources with the MAGIC telescope, based on the compilation of X-ray blazars by Donato et al. (2001). The observations took place from December 2004 to March 2006 and cover sources on the northern sky visible under small zenith distances zd < 30 degrees at culmination. The sensitivity of the search was planned for detecting X-ray bright F(1 keV) > 2 uJy) sources emitting at least the same energy flux at 200 GeV as at 1 keV. In order to avoid strong gamma-ray attenuation close to the energy threshold, the redshift of the sources was constrained to values z<0.3. Of the fourteen sources observed, 1ES 1218+304 and 1ES 2344+514 have been detected in addition to the known bright TeV blazars Mrk 421 and Mrk 501. A marginal excess of 3.5 sigma from the position of 1ES 1011+496 was observed and has been confirmed as a source of VHE gamma-rays by a second MAGIC observation triggered by a high optical state (Albert et al. 2007). For the remaining sources, we present here the 99% confidence level upper limits on the integral flux above ~200 GeV. We characterize the sample of HBLs (including all HBLs detected at VHE so far) by looking for correlations between their multi-frequency spectral indices determined from simultaneous optical, archival X-ray, and radio luminosities, finding that the VHE emitting HBLs do not seem to constitute a unique subclass. The absorption corrected gamma-ray luminosities at 200 GeV of the HBLs are generally not higher than their X-ray luminosities at 1 keV.Comment: 15 pages, 7 figures, 5 tables, submitted to ApJ (revised version

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212

    Get PDF
    We report on the discovery of Very High Energy (VHE) gamma-ray emission from the BL Lacertae object 1ES1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma with an integrated flux above 200 GeV of (1.58±0.32)1011\pm0.32) 10^{-11} photons cm2^{-2} s1^{-1}. The VHE gamma-ray flux is >40% higher than in March-April 2006 (reported elsewhere), indicating that the VHE emission state may be related to the optical emission state. We have also determined the redshift of 1ES1011+496 based on an optical spectrum that reveals the absorption lines of the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
    corecore