4 research outputs found

    Why ‘Good Governance’ Fails: Lessons from Regional Economic Development in Colombia

    Get PDF
    By critically reviewing different strands of literature on institutional change and development, this essay argues that, in order to fully understand subnational economic development, we need to move away from ‘good governance' explanations in which geography‐specific analyses of power structures and elite interests are largely absent. Using findings for Colombia and insights from economic geography and heterodox political economy theories, this essay gives theoretical and conceptual guidelines and approximations for future studies on regional economic development. The contribution provides a place‐based discussion of how the historically evolved distribution of power balances, context‐specific elite interests, and the interaction between place‐bound actors and place‐less dynamics affect subnational institutional arrangements shaping policies and development outcomes. The conclusions drawn are not limited to Colombia and will prove beneficial to researchers studying regional economic development in subnational contexts elsewhere in the world

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change+/-100) revealed a mean reduction of smell (-79.7+/- 28.7, mean+/- SD), taste (-69.0+/- 32.6), and chemesthetic (-37.3+/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.Additional co-authors: Veronica Pereda-Loth, Shannon B Olsson, Richard C Gerkin, Paloma Rohlfs Domínguez, Javier Albayay, Michael C. Farruggia, Surabhi Bhutani, Alexander W Fjaeldstad, Ritesh Kumar, Anna Menini, Moustafa Bensafi, Mari Sandell, Iordanis Konstantinidis, Antonella Di Pizio, Federica Genovese, Lina Öztürk, Thierry Thomas-Danguin, Johannes Frasnelli, Sanne Boesveldt, Özlem Saatci, Luis R. Saraiva, Cailu Lin, Jérôme Golebiowski, Liang-Dar Hwang, Mehmet Hakan Ozdener, Maria Dolors Guàrdia, Christophe Laudamiel, Marina Ritchie, Jan Havlícek, Denis Pierron, Eugeni Roura, Marta Navarro, Alissa A. Nolden, Juyun Lim, KL Whitcroft, Lauren R. Colquitt, Camille Ferdenzi, Evelyn V. Brindha, Aytug Altundag, Alberto Macchi, Alexia Nunez-Parra, Zara M. Patel, Sébastien Fiorucci, Carl M. Philpott, Barry C. Smith, Johan N Lundström, Carla Mucignat, Jane K. Parker, Mirjam van den Brink, Michael Schmuker, Florian Ph.S Fischmeister, Thomas Heinbockel, Vonnie D.C. Shields, Farhoud Faraji, Enrique Enrique Santamaría, William E.A. Fredborg, Gabriella Morini, Jonas K. Olofsson, Maryam Jalessi, Noam Karni, Anna D'Errico, Rafieh Alizadeh, Robert Pellegrino, Pablo Meyer, Caroline Huart, Ben Chen, Graciela M. Soler, Mohammed K. Alwashahi, Olagunju Abdulrahman, Antje Welge-Lüssen, Pamela Dalton, Jessica Freiherr, Carol H. Yan, Jasper H. B. de Groot, Vera V. Voznessenskaya, Hadar Klein, Jingguo Chen, Masako Okamoto, Elizabeth A. Sell, Preet Bano Singh, Julie Walsh-Messinger, Nicholas S. Archer, Sachiko Koyama, Vincent Deary, Hüseyin Yanik, Samet Albayrak, Lenka Martinec Novákov, Ilja Croijmans, Patricia Portillo Mazal, Shima T. Moein, Eitan Margulis, Coralie Mignot, Sajidxa Mariño, Dejan Georgiev, Pavan K. Kaushik, Bettina Malnic, Hong Wang, Shima Seyed-Allaei, Nur Yoluk, Sara Razzaghi, Jeb M. Justice, Diego Restrepo, Julien W Hsieh, Danielle R. Reed, Thomas Hummel, Steven D Munger, John E Haye

    Corrigendum to::More Than Smell-COVID-19 Is Associated with Severe Impairment of Smell, Taste, and Chemesthesis (Chemical Senses (2020) DOI: 10.1093/chemse/bjaa041)

    No full text
    This is a correction notice for article bjaa041 (DOI: https:// doi.org/10.1093/chemse/bjaa041), published 20 June 2020. An incorrect version of the caption to Figure 5 was mistakenly included in the published paper. An updated version is given below. Neither the data nor the paper's conclusions were affected by this correction. The authors sincerely apologize for the error. (A) Correlations between the 3 principal components with respect to changes in 3 chemosensory modalities (i.e., taste, smell, and chemesthesis). Shades of gray indicate positive correlation, whereas shades of red indicate negative correlations. White denotes no correlation. (B) Clusters of participants identified by k-means clustering. The scatterplot shows each participant's loading on dimension 1 (degree of smell and taste loss, PC1 on x-Axis) and dimension 2 (degree of chemesthesis loss, PC2 on y-Axis). Based on the centroid of each cluster, participants in cluster 1 (blue, N = 1767; top left) are generally characterized by significant smell, taste and chemesthesis loss. Participants in cluster 2 (orange, N = 1724; bottom center) are generally characterized by ratings that reflect smell/taste loss with preserved chemesthesis. Loadings for participants in cluster 3 (green, N = 548; right side) are generally characterized by reduced smell and taste loss, and preserved chemesthesis

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore