51 research outputs found

    Association of Tat with Promoters of PTEN and PP2A Subunits Is Key to Transcriptional Activation of Apoptotic Pathways in HIV-Infected CD4+ T Cells

    Get PDF
    Apoptosis in HIV-1-infected CD4+ primary T cells is triggered by the alteration of the PI3K and p53 pathways, which converge on the FOXO3a transcriptional activator. Tat alone can cause activation of FOXO3a and of its proapoptotic target genes. To understand how Tat affects this pathway, we carried out ChIP-Chip experiments with Tat. Tat associates with the promoters of PTEN and two PP2A subunit genes, but not with the FOXO3a promoter. PTEN and PP2A encode phosphatases, whose levels and activity are increased when Tat is expressed. They counteract phosphorylation of Akt1 and FOXO3a, and so activate transcriptional activity of FOXO3a. FOXO3a promotes increased transcription of Egr-1, which can further stimulate the transcription of PTEN, thereby reinforcing the pathway that leads to FOXO3a transcriptional activation. RNAi experiments support the role of PTEN and PP2A in the initiation of the Tat-mediated cascade, which is critical to apoptosis. The increased accumulation of PTEN and PP2A subunit mRNAs during Tat expression is more likely to be the result of increased transcription initiation and not relief of promoter-proximal pausing of RNAPII. The Tat-PTEN and -PP2A promoter interactions provide a mechanistic explanation of Tat-mediated apoptosis in CD4+ T cells

    A Biphasic and Brain-Region Selective Down-Regulation of Cyclic Adenosine Monophosphate Concentrations Supports Object Recognition in the Rat

    Get PDF
    Background: We aimed to further understand the relationship between cAMP concentration and mnesic performance. Methods and Findings: Rats were injected with milrinone (PDE3 inhibitor, 0.3 mg/kg, i.p.), rolipram (PDE4 inhibitor, 0.3 mg/ kg, i.p.) and/or the selective 5-HT4R agonist RS 67333 (1 mg/kg, i.p.) before testing in the object recognition paradigm. Cyclic AMP concentrations were measured in brain structures linked to episodic-like memory (i.e. hippocampus, prefrontal and perirhinal cortices) before or after either the sample or the testing phase. Except in the hippocampus of rolipram treated-rats, all treatment increased cAMP levels in each brain sub-region studied before the sample phase. After the sample phase, cAMP levels were significantly increased in hippocampus (1.8 fold), prefrontal (1.3 fold) and perirhinal (1.3 fold) cortices from controls rat while decreased in prefrontal cortex (,0.83 to 0.62 fold) from drug-treated rats (except for milrinone+RS 67333 treatment). After the testing phase, cAMP concentrations were still increased in both the hippocampus (2.76 fold) and the perirhinal cortex (2.1 fold) from controls animals. Minor increase were reported in hippocampus and perirhinal cortex from both rolipram (respectively, 1.44 fold and 1.70 fold) and milrinone (respectively 1.46 fold and 1.56 fold)-treated rat. Following the paradigm, cAMP levels were significantly lower in the hippocampus, prefrontal and perirhinal cortices from drug-treated rat when compared to controls animals, however, only drug-treated rats spent longer time exploring the novel object during the testing phase (inter-phase interval of 4 h)

    Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach

    Get PDF
    Please site as follows:Bengtsson, T. et al. 2014. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics, 15(1):315, doi:10.1186/1471-2164-15-315.The original publication is available at http://www.biomedcentral.com/1471-2164/15/315Abstract Background Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. β-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. Results Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. Conclusions BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world.Publishers' Versio
    • …
    corecore