448 research outputs found
Fermi-Lat and WMAP Observations of the Puppis a Supernova Remnant
We report the detection of GeV gamma-ray emission from the supernova remnant Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest supernova remnants yet detected at GeV energies, with a luminosity of only 2.710(exp 34) (D/2.2 kpc)(exp 2) erg s(exp 1) between 1 and 100 GeV. The gamma-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution, from radio to gamma-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of WMAP data to extend the radio spectrum up to 93 GHz. Both leptonic and hadronic dominated models can reproduce the nonthermal spectral energy distribution, requiring a total content of cosmic ray (CR) electrons and protons accelerated in Puppis A of at least WCR is approx. (1 - 5)10 (exp 49) erg
The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations
The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg 3deg south of the pulsar and observed in the radio, X-ray, and very high energy -ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features
High Energy Gamma Ray Production from Proton Induced Reactions on D, C, Zn, Pb at Incident Energies of 104, 145, and 195 MeV
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
Fermi LAT Observations of the Supernova Remnant W28 (G6.4-0.1)
We present detailed analysis of the two gamma-ray sources,1FGL J1801.3-2322c
and 1FGL J1800.5-2359c,that have been found toward the supernova remnant(SNR)
W28 with the Large Area Telescope(LAT) on board the Fermi Gamma-ray Space
Telescope.1FGL J1801.3-2322c is found to be an extended source within the
boundary of SNR W28,and to extensively overlap with the TeV gamma-ray source
HESS J1801-233,which is associated with a dense molecular cloud interacting
with the supernova remnant.The gamma-ray spectrum measured with LAT from
0.2--100 GeV can be described by a broken power-law function with a break of
~1GeV,and photon indices of 2.090.08(stat)0.28(sys) below the break
and 2.740.06(stat)0.09(sys) above the break.Given the clear
association between HESS J1801-233 and the shocked molecular cloud and a
smoothly connected spectrum in the GeV--TeV band,we consider the origin of the
gamma-ray emission in both GeV and TeV ranges to be the interaction between
particles accelerated in the SNR and the molecular cloud.The decay of neutral
pions produced in interactions between accelerated hadrons and dense molecular
gas provide a reasonable explanation for the broadband gamma-ray spectrum. 1FGL
J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be
resolved.An upper limit on the size of the gamma-ray emission was estimated to
be ~16 using events above ~2GeV under the assumption of a circular shape
with uniform surface brightness. It appears to coincide with the TeV source
HESS J1800-240B,which is considered to be associated with a dense molecular
cloud that contains the ultra compact HII region W28A2(G5.89-0.39).We found no
significant gamma-ray emission in the LAT energy band at the positions of TeV
sources HESS J1800-230A and HESS J1800-230C.The LAT data for HESS J1800-230A
combined with the TeV data points indicate a spectral break between 10GeV and
100GeV.Comment: 23 pages, 6 figures. Accepted for publication in the Astrophysical
Journal. Corresponding authors: H. Katagiri, H. Tajima, T. Tanaka, and Y.
Uchiyam
Multifragmentation in Xe(50A MeV)+Sn Confrontation of theory and data
We compare in detail central collisions Xe(50A MeV) + Sn, recently measured
by the INDRA collaboration, with the Quantum Molecular Dynamics (QMD) model in
order to identify the reaction mechanism which leads to multifragmentation. We
find that QMD describes the data quite well, in the projectile/target region as
well as in the midrapidity zone where also statistical models can be and have
been employed. The agreement between QMD and data allows to use this dynamical
model to investigate the reaction in detail. We arrive at the following
observations: a) the in medium nucleon nucleon cross section is not
significantly different from the free cross section, b) even the most central
collisions have a binary character, c) most of the fragments are produced in
the central collisions and d) the simulations as well as the data show a strong
attractive in-plane flow resembling deep inelastic collisions e) at midrapidity
the results from QMD and those from statistical model calculations agree for
almost all observables with the exception of . This
renders it difficult to extract the reaction mechanism from midrapidity
fragments only. According to the simulations the reaction shows a very early
formation of fragments, even in central collisions, which pass through the
reaction zone without being destroyed. The final transverse momentum of the
fragments is very close to the initial one and due to the Fermi motion. A
heating up of the systems is not observed and hence a thermal origin of the
spectra cannot be confirmed.Comment: figures 1 and 2 changed (no more ps -errors
GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies
The detection of diffuse radio emission associated with clusters of galaxies
indicates populations of relativistic leptons infusing the intracluster medium.
Those electrons and positrons are either injected into and accelerated directly
in the intracluster medium, or produced as secondary pairs by cosmic-ray ions
scattering on ambient protons. Radiation mechanisms involving the energetic
leptons together with decay of neutral pions produced by hadronic interactions
have the potential to produce abundant GeV photons. Here, we report on the
search for GeV emission from clusters of galaxies using data collected by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from
August 2008 to February 2010. Thirty-three galaxy clusters have been selected
according to their proximity and high mass, X-ray flux and temperature, and
indications of non-thermal activity for this study. We report upper limits on
the photon flux in the range 0.2-100 GeV towards a sample of observed clusters
(typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and
spatially resolved models for the high-energy emission, and discuss how these
results constrain the characteristics of energetic leptons and hadrons, and
magnetic fields in the intracluster medium. The volume-averaged
relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in
several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter
Searches for Cosmic-Ray Electron Anisotropies with the Fermi Large Area Telescope
The Large Area Telescope on board the \textit{Fermi} satellite
(\textit{Fermi}-LAT) detected more than 1.6 million cosmic-ray
electrons/positrons with energies above 60 GeV during its first year of
operation. The arrival directions of these events were searched for
anisotropies of angular scale extending from 10 up to
90, and of minimum energy extending from 60 GeV up to 480 GeV. Two
independent techniques were used to search for anisotropies, both resulting in
null results. Upper limits on the degree of the anisotropy were set that
depended on the analyzed energy range and on the anisotropy's angular scale.
The upper limits for a dipole anisotropy ranged from to .Comment: 16 pages, 10 figures, accepted for publication in Physical Review D -
contact authors: M.N. Mazziotta and V. Vasileio
Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere
We report on measurements of the cosmic-ray induced gamma-ray emission of
Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray
Space Telescope. The LAT has observed the Earth during its commissioning phase
and with a dedicated Earth-limb following observation in September 2008. These
measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours
total livetime for the highest quality data selection. This allows the study of
the spatial and spectral distributions of these photons with unprecedented
detail. The spectrum of the emission - often referred to as Earth albedo
gamma-ray emission - has a power-law shape up to 500 GeV with spectral index
Gamma = 2.79+-0.06.Comment: Accepted for publication in PR
- âŠ