38 research outputs found

    Easy-To-Synthesize Spirocyclic Compounds Possess Remarkable in Vivo Activity against Mycobacterium tuberculosis

    Get PDF
    Society urgently needs new, effective medicines for the treatment of tuberculosis. To kick-start the required hit-to-lead campaigns, the libraries of pharmaceutical companies have recently been evaluated for starting points. The GlaxoSmithKline (GSK) library yielded many high-quality hits, and the associated data were placed in the public domain to stimulate engagement by the wider community. One such series, the spiro compounds, are described here. The compounds were explored by a combination of traditional in-house research and open source methods. The series benefits from a particularly simple structure and a short associated synthetic chemistry route. Many members of the series displayed striking potency and low toxicity, and highly promising in vivo activity in a mouse model was confirmed with one of the analogues. Ultimately the series was discontinued due to concerns over safety, but the associated data remain public domain, empowering others to resume the series if the perceived deficiencies can be overcome

    THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria

    Get PDF
    Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors

    Identification of KasA as the cellular target of an anti-tubercular scaffold

    Get PDF
    Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis

    Recent advances in the synthesis and applications of 2,6-dipyrazolylpyridine derivatives and their complexes

    Full text link

    Variolin derivatives as anti-cancer agents

    No full text
    Pub. No.: WO/2002/004447 International Application No.: PCT/GB2001/003111 Publication Date: 17.01.2002 International Filing Date: 11.07.2001. United States Patent US7320981 B

    Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT)

    No full text
    Introduction: Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. Methods: Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5T. Results: Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97mm. Conclusion: Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS

    Prognostic Role of Subcutaneous and Visceral Adiposity in Hospitalized Octogenarians with COVID-19

    No full text
    Background: We investigated the prognostic significance of visceral and subcutaneous adiposity in octogenarians with COVID-19. Methods: This paper presents a monocentric retrospective study that was conducted in acute geriatric wards with 64 hospitalized patients aged 80+ who had a diagnosis of COVID-19 and who underwent a chest CT scan. A quantification of the subcutaneous, visceral, and total fat areas was performed after segmentations on the first abdominal slice caudal to the deepest pleural recess on a soft-tissue window setting. Logistic regression models were applied to investigate the association with in-hospital mortality and the extent of COVID-19 pneumonia. Results: The patients had a mean age of 86.4 ± 6.0 years, and 46.9% were male, with a mean BMI of 24.1 ± 4.4Kg/m2 and mortality rate of 32.8%. A higher subcutaneous fat area had a protective effect against mortality (OR 0.416; 0.183–0.944 95% CI; p = 0.036), which remained significant after adjustments for age, sex, and BMI (OR 0.231; 0.071–0.751 95% CI; p = 0.015). Inversely, higher abdominal circumference, total fat area, subcutaneous fat area, and visceral fat were associated with worse COVID-19 pneumonia, with the latter presenting the strongest association after adjustments for age, sex, and BMI (OR 2.862; 1.523–5.379 95% CI; p = 0.001). Conclusion: Subcutaneous and visceral fat areas measured on chest CT scans were associated with prognosis in octogenarians with COVID-19
    corecore