1,753 research outputs found

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion

    Full text link
    Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by intense radiation is a key to understanding compact objects, such as black holes, based on astronomical observations. This paper describes an experiment to study photoionizing plasmas in laboratory under well-defined and genuine conditions. Photoionized plasma is here generated using a 0.5-keV Planckian x-ray source created by means of a laser-driven implosion. The measured x-ray spectrum from the photoionized silicon plasma resembles those observed from the binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This demonstrates that an extreme radiation field was produced in the laboratory, however, the theoretical interpretation of the laboratory spectrum significantly contradicts the generally accepted explanations in x-ray astronomy. This model experiment offers a novel test bed for validation and verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted version of the manuscript to be published in Nature Physic

    On Validating an Astrophysical Simulation Code

    Full text link
    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multi-layer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multi-layer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ

    TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION

    Get PDF
    This paper shows results from experiments diagnosing the development of the Rayleigh–Taylor instability with two-dimensional initial conditions at an embedded, decelerating interface. Experiments are performed at the Omega Laser and use ~5 kJ of energy to create a planar blast wave in a dense, plastic layer that is followed by a lower density foam layer. The single-mode interface has a wavelength of 50 μm and amplitude of 2.5 μm. Some targets are supplemented with additional modes. The interface is shocked then decelerated by the foam layer. This initially produces the Richtmyer–Meshkov instability followed and then dominated by Rayleigh–Taylor growth that quickly evolves into the nonlinear regime. The experimental conditions are scaled to be hydrodynamically similar to SN1987A in order to study the instabilities that are believed to occur at the He/H interface during the blast-wave-driven explosion phase of the star. Simulations of the experiment were performed using the FLASH hydrodynamics code.United States. Dept. of Energy (Stewardship Science Academic Alliances Program. Grant DE FG03-99DP00284)United States. Dept. of Energy (Stewardship Science Academic Alliances Program. Grant DE-FG03-00SF22021

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding

    Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface

    Get PDF
    Results are reported from the first experiments to explore the evolution of the Rayleigh–Taylor (RT) instability from intentionally three-dimensional (3D) initial conditions at an embedded, decelerating interface in a high-Reynolds-number flow. The experiments used ∼ 5 kJ∼5kJ of laser energy to produce a blast wave in polyimide and/or brominated plastic having an initial pressure of ∼ 50 Mbars.∼50Mbars. This blast wave shocked and then decelerated the perturbed interface between the first material and lower-density C foam. This caused the formation of a decelerating interface with an Atwood number ∼ 2/3,∼2/3, producing a long-term positive growth rate for the RT instability. The initial perturbations were a 3D perturbation in an “egg-crate” pattern with feature spacings of 71 μm in two orthogonal directions and peak-to-valley amplitudes of 5 μm. The resulting RT spikes appear to overtake the shock waves, moving at a large fraction of the predeceleration, “free-fall” velocity. This result was unanticipated by prior simulations and models. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69657/2/PHPAEN-11-5-2829-1.pd

    Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

    Get PDF
    We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore