41 research outputs found

    Finding a point of growth for domestic producers : focus on food products with a short shelf life

    Get PDF
    The article proves the relevance of the production of food products with a short shelf life by domestic producers, analyzes the findings of theoretical works related to the study of consumer choice and the formation of consumer habits, presents examples of successful competition between regional producers in various regions of the country with federal players. The significance of food production with a short shelf life as a point of growth for domestic business is substantiated and the opportunities and advantages of production of these types of products and the possibility of their promotion in various territories are shown.peer-reviewe

    Novel post-synthetic generation, isomeric resolution, and characterization of Fapy-dG within oligodeoxynucleotides: differential anomeric impacts on DNA duplex properties

    Get PDF
    Accumulation of damaged guanine nucleobases within genomic DNA, including the imidazole ring opened N6-(2-Deoxy-α,β-D-erythro-pentafuranosyl)-2,6-diamino-4-hydroxy-5-formylamidopyrimidine (Fapy-dG), is associated with progression of age-related diseases and cancer. To evaluate the impact of this mutagenic lesion on DNA structure and energetics, we have developed a novel synthetic strategy to incorporate cognate Fapy-dG site-specifically within any oligodeoxynucleotide sequence. The scheme involves the synthesis of an oligonucleotide precursor containing a 5-nitropyrimidine moiety at the desired lesion site via standard solid-phase procedures. Following deprotection and isolation, the Fapy-dG lesion is generated by catalytic hydrogenation and subsequent formylation. NMR assignment of the Fapy-dG lesion (X) embedded within a TXT trimer reveals the presence of rotameric and anomeric species. The latter have been characterized by synthesizing the tridecamer oligodeoxynucleotide d(GCGTACXCATGCG) harboring Fapy-dG as the central residue and developing a protocol to resolve the isomeric components. Hybridization of the chromatographically isolated fractions with their complementary d(CGCATGCGTACGC) counterpart yields two Fapy-dG·C duplexes that are differentially destabilized relative to the canonical G·C parent. The resultant duplexes exhibit distinct thermal and thermodynamic profiles that are characteristic of α- and β-anomers, the former more destabilizing than the latter. These anomer-specific impacts are discussed in terms of differential repair enzyme recognition, processing and translesion synthesis

    Energetic signatures of single base bulges: thermodynamic consequences and biological implications

    Get PDF
    DNA bulges are biologically consequential defects that can arise from template-primer misalignments during replication and pose challenges to the cellular DNA repair machinery. Calorimetric and spectroscopic characterizations of defect-containing duplexes reveal systematic patterns of sequence-context dependent bulge-induced destabilizations. These distinguishing energetic signatures are manifest in three coupled characteristics, namely: the magnitude of the bulge-induced duplex destabilization (ΔΔGBulge); the thermodynamic origins of ΔΔGBulge (i.e. enthalpic versus entropic); and, the cooperativity of the duplex melting transition (i.e. two-state versus non-two state). We find moderately destabilized duplexes undergo two-state dissociation and exhibit ΔΔGBulge values consistent with localized, nearest neighbor perturbations arising from unfavorable entropic contributions. Conversely, strongly destabilized duplexes melt in a non-two-state manner and exhibit ΔΔGBulge values consistent with perturbations exceeding nearest-neighbor expectations that are enthalpic in origin. Significantly, our data reveal an intriguing correlation in which the energetic impact of a single bulge base centered in one strand portends the impact of the corresponding complementary bulge base embedded in the opposite strand. We discuss potential correlations between these bulge-specific differential energetic profiles and their overall biological implications in terms of DNA recognition, repair and replication

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study

    Get PDF
    There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)

    Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization

    No full text
    Drug discovery strategies have advanced significantly towards prioritizing target selectivity to achieve the longstanding goal of identifying “magic bullets” amongst thousands of chemical molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, including the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized the discovery of novel therapeutics in treatment regimens. The design, development, and optimization of lead compounds represent an arduous and time-consuming process that necessitates the assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating functional, structural, and energetic properties. The present review focuses on specific methodologies and technologies aimed at advancing drug development with particular emphasis on the role of thermodynamics in elucidating the underlying forces governing ligand–target interaction selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC) has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for mining thermodynamic databases to critically examine and evaluate prospective drug candidates on the basis of available metrics. The ultimate power and utility of thermodynamics within drug discovery strategies reside in the characterization and comparison of intrinsic binding signatures that facilitate the elucidation of structural–energetic correlations which assist in lead compound identification and optimization to improve overall therapeutic efficacy
    corecore