11 research outputs found

    The urgency of Arctic change

    Get PDF
    This article provides a synthesis of the latest observational trends and projections for the future of the Arctic. First, the Arctic is already changing rapidly as a result of climate change. Contemporary warm Arctic temperatures and large sea ice deficits (75% volume loss) demonstrate climate states outside of previous experience. Modeled changes of the Arctic cryosphere demonstrate that even limiting global temperature increases to near 2 °C will leave the Arctic a much different environment by mid-century with less snow and sea ice, melted permafrost, altered ecosystems, and a projected annual mean Arctic temperature increase of +4 °C. Second, even under ambitious emission reduction scenarios, high-latitude land ice melt, including Greenland, are foreseen to continue due to internal lags, leading to accelerating global sea level rise throughout the century. Third, future Arctic changes may in turn impact lower latitudes through tundra greenhouse gas release and shifts in ocean and atmospheric circulation. Arctic-specific radiative and heat storage feedbacks may become an obstacle to achieving a stabilized global climate. In light of these trends, the precautionary principle calls for early adaptation and mitigation actions

    The role of the Arctic Monitoring and Assessment Programme (AMAP) in reducing pollution of the Arctic and around the globe

    No full text
    This article presents the initiation and implementation of a systematic scientific and political cooperation in the Arctic related to environmental pollution and climate change, with a special focus on the role of the Arctic Monitoring and Assessment Programme (AMAP). The AMAP initiative has coordinated monitoring and assessments of environmental pollution across countries and parameters for the entire Arctic region. Starting from a first scientific assessment in 1998, AMAP's work has been fundamental in recognizing, understanding and addressing environmental and human health issues in the Arctic, including those of persistent organic pollutants (POPs), mercury, radioactivity, oil, acidification and climate change. These scientific results have contributed at local and international levels to define and take measures towards reducing the pollution not only in the Arctic, but of the whole globe, especially the contaminant exposure of indigenous and local communities with a traditional lifestyle. The results related to climate change have documented the rapid changes in the Arctic and the strong feedback between the Arctic and the rest of the world. The lessons learned from the work in the Arctic can be beneficial for other regions where contaminants may accumulate and affect local and indigenous peoples living in a traditional way, e.g. in the Himalayas. Global cooperation is indispensable in reducing the long-range transported pollution in the Arctic

    Preface

    No full text

    Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes:a comprehensive review combined with ArcRisk project results

    Get PDF
    Abstract Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk—a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic—to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmer Arctic, but the general decline in PCB levels is still the most prominent feature. ‘Within-Arctic’ processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further
    corecore