11 research outputs found

    Distribution of Maximal Luminosity of Galaxies in the Sloan Digital Sky Survey

    Get PDF
    Extreme value statistics (EVS) is applied to the pixelized distribution of galaxy luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR8 Main Galaxy Sample (MGS) as well as the Luminous Red Galaxy Sample (LRGS). A non-parametric comparison of the EVS of the luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for independent variables distributed by the Press-Schechter law) indicates a good agreement provided uncertainties arising both from the finite size of the samples and from the sample size distribution are accounted for. This effectively rules out the possibility of having a finite maximum cutoff luminosit

    Cosmic Voids: structure, dynamics and galaxies

    Get PDF
    In this review we discuss several aspects of Cosmic Voids. Voids are a major component of the large scale distribution of matter and galaxies in the Universe. They are of instrumental importance for understanding the emergence of the Cosmic Web. Their relatively simple shape and structure makes them into useful tools for extracting the value of a variety cosmic parameters, possibly including even that of the influence of dark energy. Perhaps most promising and challenging is the issue of the galaxies found within their realm. Not only does the pristine environment of voids provide a promising testing ground for assessing the role of environment on the formation and evolution of galaxies, the dearth of dwarf galaxies may even represent a serious challenge to the standard view of cosmic structure formation.Comment: 29 pages, 12 figures, invited review COSPA2008, Pohang, Korea. Modern Physics Letters A, accepted. For high-res version see http://www.astro.rug.nl/~weygaert/voids.cospa2008.weygaert.pd

    Distribution of Maximal Luminosity of Galaxies in the Sloan Digital Sky Survey

    Get PDF
    Extreme value statistics (EVS) is applied to the pixelized distribution of galaxy luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR8 Main Galaxy Sample (MGS) as well as the Luminous Red Galaxy Sample (LRGS). A non-parametric comparison of the EVS of the luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for independent variables distributed by the Press-Schechter law) indicates a good agreement provided uncertainties arising both from the finite size of the samples and from the sample size distribution are accounted for. This effectively rules out the possibility of having a finite maximum cutoff luminosit

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z

    Full text link

    CLASH-VLT: The stellar mass function and stellar mass density profile of the z = 0.44 cluster of galaxies MACS J1206.2-0847

    Get PDF
    Context. The study of the galaxy stellar mass function (SMF) in relation to the galaxy environment and the stellar mass density profile ρ*(r) is a powerful tool to constrain models of galaxy evolution. Aims: We determine the SMF of the z = 0.44 cluster of galaxies MACS J1206.2-0847 separately for passive and star-forming (SF) galaxies in different regions of the cluster from the center out to approximately 2 virial radii. We also determine ρ⋆(r) to compare it to the number density and total mass density profiles. Methods: We use the dataset from the CLASH-VLT survey. Stellar masses are obtained by spectral energy distribution fitting with the MAGPHYS technique on 5-band photometric data obtained at the Subaru telescope. We identify 1363 cluster members down to a stellar mass of 10^9.5M⊙ selected on the basis of their spectroscopic (~1/3 of the total) and photometric redshifts. We correct our sample for incompleteness and contamination by non members. Cluster member environments are defined using either the clustercentric radius or the local galaxy number density. Results: The whole cluster SMF is well fitted by a double Schechter function which is the sum of the two Schechter functions that provide good fits to the SMFs of separately the passive and SF cluster populations. The SMF of SF galaxies is significantly steeper than the SMF of passive galaxies at the faint end. The SMF of the SF cluster galaxies does not depend on the environment. The SMF of the passive cluster galaxies has a significantly smaller slope (in absolute value) in the innermost (≤ 0.50 Mpc i.e. ~0.25 virial radii) and in the highest density cluster region than in more external lower density regions. The number ratio of giant/subgiant galaxies is maximum in this innermost region and minimum in the adjacent region but then gently increases again toward the cluster outskirts. This is also reflected in a decreasing radial trend of the average stellar mass per cluster galaxy. On the other hand the stellar mass fraction i.e. the ratio of stellar to total cluster mass does not show any significant radial trend. Conclusions: Our results appear consistent with a scenario in which SF galaxies evolve into passive galaxies due to density-dependent environmental processes and eventually get destroyed very near the cluster center to become part of a diffuse intracluster medium. Dynamical friction on the other hand does not seem to play an important role. Future investigations of other clusters of the CLASH-VLT sample will allow us to confirm our interpretation

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847

    Get PDF
    Aims: We constrain the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 CLASH cluster MACS J1206.2-0847, using the projected phase-space distribution of cluster galaxies in combination with gravitational lensing. Methods: We use an unprecedented data-set of ≃600 redshifts for cluster members, obtained as part of a VLT/VIMOS large program, to constrain the cluster mass profile over the radial range ~0-5 Mpc (0-2.5 virial radii) using the MAMPOSSt and Caustic methods. We then add external constraints from our previous gravitational lensing analysis. We invert the Jeans equation to obtain the velocity-anisotropy profiles of cluster members. With the mass-density and velocity-anisotropy profiles we then obtain the first determination of a cluster pseudo-phase-space density profile. Results: The kinematics and lensing determinations of the cluster mass profile are in excellent agreement. This is very well fitted by a NFW model with mass M200 = (1.4 ± 0.2) × 1015 M⊙ and concentration c200 = 6 ± 1, only slightly higher than theoretical expectations. Other mass profile models also provide acceptable fits to our data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere) or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of the passive and star-forming cluster members are similar, close to isotropic near the center and increasingly radial outside. Passive cluster members follow extremely well the theoretical expectations for the pseudo-phase-space density profile and the relation between the slope of the mass-density profile and the velocity anisotropy. Star-forming cluster members show marginal deviations from theoretical expectations. Conclusions: This is the most accurate determination of a cluster mass profile out to a radius of 5 Mpc, and the only determination of the velocity-anisotropy and pseudo-phase-space density profiles of both passive and star-forming galaxies for an individual cluster. These profiles provide constraints on the dynamical history of the cluster and its galaxies. Prospects for extending this analysis to a larger cluster sample are discussed. Based in large part on data collected at the ESO VLT (prog. ID 186.A-0798), at the NASA HST, and at the NASJ Subaru telescope.Appendices are available in electronic form at http://www.aanda.or

    Intra Cluster Light properties in the CLASH-VLT cluster MACS J1206.2-0847

    No full text
    We aim at constraining the assembly history of clusters by studying the intra cluster light (ICL) properties, estimating its contribution to the fraction of baryons in stars, f*, and understanding possible systematics/bias using different ICL detection techniques. We developed an automated method, GALtoICL, based on the software GALAPAGOS to obtain a refined version of typical BCG+ICL maps. We applied this method to our test case MACS J1206.2-0847, a massive cluster located at z=0.44, that is part of the CLASH sample. Using deep multi-band SUBARU images, we extracted the surface brightness (SB) profile of the BCG+ICL and we studied the ICL morphology, color, and contribution to f* out to R500. We repeated the same analysis using a different definition of the ICL, SBlimit method, i.e. a SB cut-off level, to compare the results. The most peculiar feature of the ICL in MACS1206 is its asymmetric radial distribution, with an excess in the SE direction and extending towards the 2nd brightest cluster galaxy which is a Post Starburst galaxy. This suggests an interaction between the BCG and this galaxy that dates back to t 0.3. At completion, the CLASH/VLT program will allow us to extend this analysis to a statistically significant cluster sample spanning a wide redshift range: 0.2<z<0.6

    Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847

    Get PDF
    Aims: We aim constrain the assembly history of clusters by studying the intracluster light (ICL) properties, estimating its contribution to the fraction of baryons in stars, f∗, and understanding possible systematics or bias using different ICL detection techniques. Methods: We developed an automated method, GALtoICL, based on the software GALAPAGOS, to obtain a refined version of typical BCG+ICL maps. We applied this method to our test case MACS J1206.2-0847, a massive cluster located at z ~ 0.44, which is part of the CLASH sample. Using deep multiband Subaru images, we extracted the surface brightness (SB) profile of the BCG+ICL and studied the ICL morphology, color, and contribution to f∗ out to R500. We repeated the same analysis using a different definition of the ICL, SBlimit method, i.e., a SB cut-off level, to compare the results. Results: The most peculiar feature of the ICL in MACS1206 is its asymmetric radial distribution, with an excess in the SE direction and extending toward the second brightest cluster galaxy, which is a post starburst galaxy. This suggests an interaction between the BCG and this galaxy that dates back to τ ≤ 1.5 Gyr. The BCG+ICL stellar content is ~8% of M∗,500, and the (de-) projected baryon fraction in stars is f∗ = 0.0177(0.0116), in excellent agreement with recent results. The SBlimit method provides systematically higher ICL fractions and this effect is stronger at lower SB limits. This is due to the light from the outer envelopes of member galaxies that contaminate the ICL. Though more time consuming, the GALtoICL method provides safer ICL detections that are almost free of this contamination. This is one of the few ICL study at redshift z > 0.3. At completion, the CLASH/VLT program will allow us to extend this analysis to a statistically significant cluster sample spanning a wide redshift range: 0.2 ≲ z ≲ 0.6
    corecore