197 research outputs found
Effect of Noise on the Standard Mapping
The effect of a small amount of noise on the standard mapping is considered.
Whenever the standard mapping possesses accelerator modes (where the action
increases approximately linearly with time), the diffusion coefficient contains
a term proportional to the reciprocal of the variance of the noise term. At
large values of the stochasticity parameter, the accelerator modes exhibit a
universal behavior. As a result the dependence of the diffusion coefficient on
the stochasticity parameter also shows some universal behavior.Comment: Plain TeX, 18 pages, 4 figure
Classical and quantum dynamics of the n-dimensional kicked rotator
The classical and quantum dynamics for an n-dimensional generalization of the
kicked planar (n=1) rotator in an additional effective centrifugal potential.
Therefore, typical phenomena like the diffusion in classical phase space are
similar to that of the one-dimensional model. For the quantum dynamics such a
result is not expected as in this case the evolution does depend in a very
complicated way on the number n of degrees of freedom. In the limit n -->
infinity we find the free undistrubed quantum motion. For finite values of n
(1<=n<=26) we study numerically the quantum dynamics. Here, we always find
localization independent of the actual number of degrees of freedom.Comment: uuencoded gzipped postscript file, Problem in postscript file
resolved. For uncompressed postscript file see
http://faupt101.physik.uni-erlangen.de/junker/papers95.ht
The quantum paraelectric behavior of SrTiO_{3} revisited: relevance of the structural phase transition temperature
It has been known for a long time that the low temperature behavior shown by
the dielectric constant of quantum paraelectric can not be fitted
properly by Barrett's formula using a single zero point energy or saturation
temperature (). As it was originally shown [K. A. M\"{u}ller and H.
Burkard, Phys. Rev. B {\bf 19}, 3593 (1979)] a crossover between two different
saturation temperatures (=77.8K and =80K) at is
needed to explain the low and high temperature behavior of the dielectric
constant. However, the physical reason for the crossover between these two
particular values of the saturation temperature at is unknown. In
this work we show that the crossover between these two values of the saturation
temperature at can be taken as a direct consequence of (i) the
quantum distribution of frequencies associated
with the complete set of low-lying modes and (ii) the existence of a definite
maximum phonon frequency given by the structural transition critical
temperature .Comment: 8 pages, 3 figure
On the influence of noise on chaos in nearly Hamiltonian systems
The simultaneous influence of small damping and white noise on Hamiltonian
systems with chaotic motion is studied on the model of periodically kicked
rotor. In the region of parameters where damping alone turns the motion into
regular, the level of noise that can restore the chaos is studied. This
restoration is created by two mechanisms: by fluctuation induced transfer of
the phase trajectory to domains of local instability, that can be described by
the averaging of the local instability index, and by destabilization of motion
within the islands of stability by fluctuation induced parametric modulation of
the stability matrix, that can be described by the methods developed in the
theory of Anderson localization in one-dimensional systems.Comment: 10 pages REVTEX, 9 figures EP
Theory of quantum paraelectrics and the metaelectric transition
We present a microscopic model of the quantum paraelectric-ferroelectric
phase transition with a focus on the influence of coupled fluctuating phonon
modes. These may drive the continuous phase transition first order through a
metaelectric transition and furthermore stimulate the emergence of a textured
phase that preempts the transition. We discuss two further consequences of
fluctuations, firstly for the heat capacity, and secondly we show that the
inverse paraelectric susceptibility displays T^2 quantum critical behavior, and
can also adopt a characteristic minimum with temperature. Finally, we discuss
the observable consequences of our results.Comment: 5 pages, 2 figure
On the escape of cosmic rays from radio galaxy cocoons
(Abridged) A model for the escape of CR particles from radio galaxy cocoons
is presented here. It is assumed that the radio cocoon is poorly magnetically
connected to the environment. An extreme case of this kind is an insulating
boundary layer of magnetic fields, which can efficiently suppress particle
escape. More likely, magnetic field lines are less organised and allow the
transport of CR particles from the source interior to the surface region. For
such a scenario two transport regimes are analysed: diffusion of particles
along inter-phase magnetic flux tubes (leaving the cocoon) and cross field
transport of particles in flux tubes touching the cocoon surface. The cross
field diffusion is likely the dominate escape path, unless a significant
fraction of the surface is magnetically connected to the environment. Major
cluster merger should strongly enhance the particle escape by two complementary
mechanisms. i) The merger shock waves shred radio cocoons into filamentary
structures, allowing the CRs to easily reach the radio cocoon boundary due to
the changed morphology. ii) Also efficient particle losses can be expected for
radio cocoons not compressed in shock waves. There, for a short period after
the sudden injection of large scale turbulence, the (anomalous) cross field
diffusion can be enhanced by several orders of magnitude. This lasts until the
turbulent energy cascade has reached the microscopic scales, which determine
the value of the microscopic diffusion coefficients.Comment: A&A in press, 12 pages, 5 figures, minor language improvement
Low heat conduction in white dwarf boundary layers?
X-ray spectra of dwarf novae in quiescence observed by Chandra and XMM-Newton
provide new information on the boundary layers of their accreting white dwarfs.
Comparison of observations and models allows us to extract estimates for the
thermal conductivity in the accretion layer and reach conclusions on the
relevant physical processes. We calculate the structure of the dense thermal
boundary layer that forms under gravity and cooling at the white dwarf surface
on accretion of gas from a hot tenuous ADAF-type coronal inflow. The
distribution of density and temperature obtained allows us to calculate the
strength and spectrum of the emitted X-ray radiation. They depend strongly on
the values of thermal conductivity and mass accretion rate. We apply our model
to the dwarf nova system VW Hyi and compare the spectra predicted for different
values of the thermal conductivity with the observed spectrum. We find a
significant deviation for all values of thermal conductivity that are a sizable
fraction of the Spitzer conductivity. A good fit arises however for a
conductivity of about 1% of the Spitzer value. This also seems to hold for
other dwarf nova systems in quiescence. We compare this result with thermal
conduction in other astrophysical situations. The highly reduced thermal
conductivity in the boundary layer requires magnetic fields perpendicular to
the temperature gradient. Locating their origin in the accretion of magnetic
fields from the hot ADAF-type coronal flow we find that dynamical effects of
these fields will lead to a spatially intermittent, localized accretion
geometry at the white dwarf surface.Comment: 8 pages, 5 figs, to appear in Astronomy & Astrophysic
Cantori and dynamical localization in the Bunimovich Stadium
Classical and quantum properties of the Bunimovich stadium in the diffusive
regime are reviewed. In particular, the quantum properties are directly
investigated using an approximate quantum map. Different localized regimes are
found, namely, perturbative, quasi-integrable (due to classical Cantori),
dynamical and ergodic.Comment: RevTeX, 8 pages, to be published in Physica
Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations
<p><b>Context:</b> A fundamental problem in astrophysics is the interaction between magnetic turbulence and charged particles. It is now possible to use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of hard X-rays (HXR) emitted by electrons to identify the presence of turbulence and to estimate the magnitude of the magnetic field line diffusion coefficient at least in dense coronal flaring loops.</p>
<p><b>Aims:</b> We discuss the various possible regimes of cross-field transport of non-thermal electrons resulting from broadband magnetic turbulence in coronal loops. The importance of the Kubo number K as a governing parameter is emphasized and results applicable in both the large and small Kubo number limits are collected.</p>
<p><b>Methods:</b> Generic models, based on concepts and insights developed in the statistical theory of transport, are applied to the coronal loops and to the interpretation of hard X-ray imaging data in solar flares. The role of trapping effects, which become important in the non-linear regime of transport, is taken into account in the interpretation of the data.</p>
<p><b>Results:</b> For this flaring solar loop, we constrain the ranges of parallel and perpendicular correlation lengths of turbulent magnetic fields and possible Kubo numbers. We show that a substantial amount of magnetic fluctuations with energy ~1% (or more) of the background field can be inferred from the measurements of the magnetic diffusion coefficient inside thick-target coronal loops.</p>
- …
