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A probabilistic method for the solution of the Vlasov equation has

been applied to the Chirikov-Taylor model. The analytical solutions

for the probability function and its second velocity moment have been

obtained.. Good agreement between the theory and numerical computa-

tions has been found.
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The purpose of this letter is to present an analytical solution

for the Chirikov-Taylor model1,2 This model has been studied ex-

tensively in the last ten years in reference to many different plasma

17-6
physics problems Such an interest is due to the fact that this

simple model exhibits chaotic or turbulent dynamics manifested in the

region above the so-called stochastic transition ,. We will intro-

duce the method of solution and the underlying physical arguments

through the differential equation which describes the motion of charged

particles in a field of electrostatic plane waves. The equation of

motion is:
2~ d~

d = e E(x,t) (1)
dt

where is the mass, e:is the charge of the particle, and the

electric field is given by the equation

E(K, t) = E r exp[i(kC - 'nt)] + c.c. (2).
m,n

W assume here periodic- boundary conditions in the interval

0'< x < a, km = 23rm/a, m integer, and a discrete spectrum in &a

Consider the case:

k 2=- w =27 n
M a im n 0

with n=0,+l,+2,...4N, and E1 ,n = E/(2i) is constant. The symbol

mn is a Kronecker function. Using dimensionless variables by

rescaling distance with a /(2-A) and time with .2T * , Eq.(l)

takes the form

dx
dt (4)
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(5)dv sin[wt(2N + 1)]
dt sinx sin ut

and c = (27r) 3 e/a N 1.
o 0 /

Consider the phase space x, v and introduce the initial

distribution of phase-space points f(x, v, t = 0). The time

evolution of f is described by a Vlasov equation

af dva (6)- + V = 0 .

This is just a continuity equation of phase-space flow. This

flow is deterministic, that is, the position of every point can

be predicted uniquely for an arbitrary large time t. Due to .the

complicated nonlinear character of Eq. (5), some phase points

which are initially separated can come arbitrarily close to each

other if the time of evolution is long enough. This implies that

f can become arbitrarily large-because-phase space density is

conserved along the orbits (Liouville theorem). We may say that

long time solutions are intrinsically singular. This is why it

is impossible to find an analytic solution of. the.Valsov equation

even for the simple motion described by Eqs. (4) , (5). On the

other hand, there are always some processes which are not

included in these -equations, including snall errors introduced in

a numerical solution. In spite of being very small they do play

an important role in the limit of large times as we will see

later.. A simple way of modeling such effects is to introduce a

random velocity term in Eq. (4) or a random force term in Eq.



(5). We have done these numnerically. From the analytic point of

view, it is more convenient to treat these as additional spatial

or velocity diffusion terms in the Vlasov equation. The analysis

happens to be much easier for the case of spatial diffusion. The

Vlasov equation in this case takes the form:

-- I".I-~aX;t a (7)

Thus the deterministic description given by the Vlasov equation

is substituted by a probabilistic One with probability function

P(x,v,t) , which we normalize to unity . We consider 6 << 1.

As we will see later it is the diffusion which resolves the

singular nature of the long time solutions of the Vlasov

equation. The effect of weak diffusion has been discussed qualita-

tively for the similar problem of electron heat transport in tokamaks

with destroyed magnetic surfaces 7. The initial -condition for P we

take of the form:

P(x, V, 0) - 6(v - v ) .
2r o)

The Chirikov-Taylor model corresponds to the limit N+ . Then

sin(Tt(2N+1))/sin(Trt) can be approximated by (t-i).
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Consider now the time evolution of the probability function

P. In the interval i-O < t < i+0 it can be written as

P(x,v,i+ 0) = P(x,v+ e sinx, i -0) (9)

Here i is an integer and +0 is an arbitrary small number.

Evolution in the interval i+0 < t < i+1 - 0 is given by the

formula

P (x, v, t) = dv G (- vvtt)P ,y(Xj 1, J) - (x-x 1,v,vj 1t-t 1 )P(x 1 ,V1 1 t )dx 1

-( 10)

where G is a solution of the equation

2
G 3G a G 6 (x - x )6 (v - v )6(t t

2t2 1 1 3x 2 1)1

e (t-t) 6 (v-v)
G = )

.V2 Ta (t-t ) n=- D

-[x-xl-v (t-tl) +21nJ 2

ex- 2a(t - ti) (12)

Here - (t) is the Heavyside function.

I
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The smiation appears because of the periodic boundary

conditions in the interval 0 ( x ( 2 . We can now write a

formal solution to Eq.(7) for initial probability given by Eq.(8)

for arbitrary time t. For simplicity we consider t=T, a large

integer.

P(xT v,T) =

n -

f 27r dxi
CO T-1

... E
n =-o i=O

(13)
T

6(v-v -S ) ex-x -v-S +2rn ) 2
-T 0- T p1:- (x-- i 0 j-J. j

and
j

S. e sin x
J P=O

It is easy to check by direct. integration that P(x ,v,T) is

correctly normalized,

dv
-- 0

dx P(x, V, T) = 1
(14)

To calculate the diffusion rate we use the formula

.
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2(v-+v0 ) P (x, v,'T) d x dv

With the use of the identity

exp (y+ rn) 2 c exp (-a/2 m2 + m)
M=-.Co

(16)

we can write Eq.(15) as

D = 1imE
T+i MT =-C>

(a/2)m2 + im. (x - x._ -v -s (17)

S.=EZ

p=o

sin x
p

In the case m. = 0 the calculations are trivial and we findI1

D = lim
T+-

(15)

1

T.

i=O

dx.
I

27

S exp
T

(jzj

CO

m1=_CO

1 1 2O

2T
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2 (18)
D 

CQL 4

This case corresponds to the random phase approximation often

made in quasilinear theory. 7b evaluate D for m1  0 we make

use of the identity

exp(±iz sinx) = Jn (z) exp(±inx) (19)
n=

Here .J (Z) are Bessel functions and z>0.

Making use of Eq.(19) it is easy to see that the series in

Eq. (17) involves products of Bessel functions. In the region of

large 6 the Bessel functions decay as so we can keep just a

few low order terms in Eq. (17) . The expression obtained for D is

- - 2 1_J )e - 2 2 e 3 a]
D J 2 J (c) e + 3 -3 (20)

which is. obtained from Eq(17) from those terms in which two or

three of the mr # o , and all others are zero. The J term

arises from terms with m. = +1, m. =-M , 1=2,3,...T. The J

term is similar, with M =-m , I=3,4,...T, and the

term comes from m = ±1, m, = -2mn , m- -= m ,T.

We have neglected products involving three or more. Bessel

functions. Our nisnerical computations suggest that convergence
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of the series approximated by Eq(20) in the region >> 1 is

much faster than that due simply to the exponential factors

exp(- nm, /2). The possible relation between this fast

convergence and exponential orbit divergence for Eqs(4),(5) which

takes place in the region 4 >> 1 ( the so called stochastic

instability ) has not yet been examined. The leading

asymptotic terms in Eq(20) are

D -a2 1/25D - 2e t. - cos E -5- (21)
QL

Thus D approaches DL in the limit >> 1. It was

pointed -"out to us by a referee that the usual quasilinear limit

corresponds to E4 00 . We recall here that the. spectrum of

W is assumed to be continuous in quasilinear theory. Within

our -model a continuous spectrum can be achieved by considering

the -limit LV0 -i 0. Theri in drder that the power density per

unit frequency bandwith remain constant we need to rescale

E LO 0 -> and E 4 (see Eq. )

The contribution- to D from terms with m. d 0 can be comparable to or
J

even bigger than DL for some values of e (see also Figure 1). This could
QL

have practical implications especially for the problems of radiofrequency

6
heating We will address this question in future publications.

We have made extensive numerical study of Eqs. (4), (5), intro-

ducing a small random step in x with a normal distribution of mean a. Some

of the results of these computations are shown in Figure 1 for the case a = 10-5

To obtain sufficient accuracy in the evaluation of D we used the number

of particles N = 3000,
p
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the fluctuations in D behaving as l/vT , and advancing the equations to
p

T = 50. We also verified that intorducing a random step in v instead of in x

leads to essentially the same results for small a and large e. The oscilla-

tions in D/D were apparently first noted by Chirikov , but were independently

found by Kyriakos Hizanidis and pointed out to the present authors. We also

note-from this figure that D approaches DQL in the limit of large C. Also

plotted on Figure 1 is the function given by Eq. (20). It is clear that

there is good agreement for large C, but for c of the order of unity we need

to retain more. terms in the evaluation of Eq. (17). We think that the method

outlined may prove useful in other problems were apparently chaotic behavior

arises from deterministic equations.
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FIGURE CAPTIONS

V Fig. 1. The ratio of the numerically obtained diffusion to the

quasilinear value as a function of E . Here C =

Also plotted is the analytic expression given

by Eq.(20).


