716 research outputs found
Hamiltonian model of capture into mean motion resonance
Mean motion resonances are a common feature of both our own Solar System and
of extrasolar planetary systems. Bodies can be trapped in resonance when their
orbital semi-major axes change, for instance when they migrate through a
protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the
capture behaviour for first and second order resonances. Using this method, all
resonances of the same order can be described by one equation, with
applications to specific resonances by appropriate scaling. We focus on the
limit where one body is a massless test particle and the other a massive
planet. We quantify how the the probability of capture into a resonance depends
on the relative migration rate of the planet and particle, and the particle's
eccentricity. Resonant capture fails for high migration rates, and has
decreasing probability for higher eccentricities, although for certain
migration rates, capture probability peaks at a finite eccentricity. We also
calculate libration amplitudes and the offset of the libration centres for
captured particles, and the change in eccentricity if capture does not occur.
Libration amplitudes are higher for larger initial eccentricity. The model
allows for a complete description of a particle's behaviour as it successively
encounters several resonances. The model is applicable to many scenarios,
including (i) Planet migration through gas discs trapping other planets or
planetesimals in resonances; (ii) Planet migration through a debris disc; (iii)
Dust migration through PR drag. Full details can be found in
\cite{2010submitted}. (Abridged)Comment: 4 pages, Proceedings of IAUS276 "The Astrophysics of Planetary
Systems: Formation, Structure, and Dynamical Evolution
Socialization of the elderly in outdoor health circuits
En los parques biosaludables, originalmente concebidos para la población madura y anciana, se encuentran usuarios de diferentes edades y con distintas formas de entender la actividad física. El presente trabajo intenta examinar las relaciones de las personas mayores con el resto de usuarios para determinar en qué medida dichos parques pueden cumplir alguna función social más allá del fomento de hábitos saludables. Para ello se ha llevado a cabo una serie de observaciones, participantes y no participantes, en tres parques de la ciudad de Granada, donde se ha visto que, si bien existe una proporción minoritaria pero importante de usuarios jóvenes (aproximadamente un tercio del total), estos tienden a evitar una interacción que parte de los usuarios de mayor edad buscan expresamente
Investigating the flyby scenario for the HD 141569 system
HD 141569, a triple star system, has been intensively observed and studied
for its massive debris disk. It was rather regarded as a gravitationally bound
triple system but recent measurements of the HD 141569A radial velocity seem to
invalidate this hypothesis. The flyby scenario has therefore to be investigated
to test its compatibility with the observations. We present a study of the
flyby scenario for the HD141569 system, by considering 3 variants: a sole
flyby, a flyby associated with one planet and a flyby with two planets. We use
analytical calculations and perform N-body numerical simulations of the flyby
encounter. The binary orbit is found to be almost fixed by the observational
constraint on a edge-on plane with respect to the observers. If the binary has
had an influence on the disk structure, it should have a passing time at the
periapsis between 5000 and 8000 years ago and a distance at periapsis between
600 and 900 AU. The best scenario for reproducing the disk morphology is a
flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must
be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130
AU. Although the global disk shape is reasonably well reproduced, some features
cannot be explain by the present model and the likehood of the flyby event
remains an issue. Dynamically speaking, HD 141569 is still a puzzling system
Epidemics in Networks of Spatially Correlated Three-dimensional Root Branching Structures
Using digitized images of the three-dimensional, branching structures for
root systems of bean seedlings, together with analytical and numerical methods
that map a common 'SIR' epidemiological model onto the bond percolation
problem, we show how the spatially-correlated branching structures of plant
roots affect transmission efficiencies, and hence the invasion criterion, for a
soil-borne pathogen as it spreads through ensembles of morphologically complex
hosts. We conclude that the inherent heterogeneities in transmissibilities
arising from correlations in the degrees of overlap between neighbouring
plants, render a population of root systems less susceptible to epidemic
invasion than a corresponding homogeneous system. Several components of
morphological complexity are analysed that contribute to disorder and
heterogeneities in transmissibility of infection. Anisotropy in root shape is
shown to increase resilience to epidemic invasion, while increasing the degree
of branching enhances the spread of epidemics in the population of roots. Some
extension of the methods for other epidemiological systems are discussed.Comment: 21 pages, 8 figure
On the observability of resonant structures in planetesimal disks due to planetary migration
We present a thorough study of the impact of a migrating planet on a
planetesimal disk, by exploring a broad range of masses and eccentricities for
the planet. We discuss the sensitivity of the structures generated in debris
disks to the basic planet parameters. We perform many N-body numerical
simulations, using the symplectic integrator SWIFT, taking into account the
gravitational influence of the star and the planet on massless test particles.
A constant migration rate is assumed for the planet. The effect of planetary
migration on the trapping of particles in mean motion resonances is found to be
very sensitive to the initial eccentricity of the planet and of the
planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out
all the resonant structures, except for the most massive planets. The
planetesimals also initially have to be on orbits with a mean eccentricity of
less than than 0.1 in order to keep the resonant clumps visible. This numerical
work extends previous analytical studies and provides a collection of disk
images that may help in interpreting the observations of structures in debris
disks. Overall, it shows that stringent conditions must be fulfilled to obtain
observable resonant structures in debris disks. Theoretical models of the
origin of planetary migration will therefore have to explain how planetary
systems remain in a suitable configuration to reproduce the observed
structures.Comment: 16 pages, 13 figures. Accepted for publication in A&
A general model of resonance capture in planetary systems: First and second order resonances
Mean motion resonances are a common feature of both our own Solar System and
of extrasolar planetary systems. Bodies can be trapped in resonance when their
orbital semi-major axes change, for instance when they migrate through a
protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the
capture behaviour for first and second order resonances. Using this method, all
resonances of the same order can be described by one equation, with
applications to specific resonances by appropriate scaling. We focus on the
limit where one body is a massless test particle and the other a massive
planet. We quantify how the the probability of capture into a resonance depends
on the relative migration rate of the planet and particle, and the particle's
eccentricity. Resonant capture fails for high migration rates, and has
decreasing probability for higher eccentricities. More massive planets can
capture particles at higher eccentricities and migration rates. We also
calculate libration amplitudes and the offset of the libration centres for
captured particles, and the change in eccentricity if capture does not occur.
Libration amplitudes are higher for larger initial eccentricity. The model
allows for a complete description of a particle's behaviour as it successively
encounters several resonances. We discuss implications for several scenarios:
(i) Planet migration through gas discs trapping other planets or planetesimals
in resonances. (ii) Planet migration through a debris disc. (iii) Dust
migration through PR drag. The Hamiltonian model will allow quick
interpretation of the resonant properties of extrasolar planets and Kuiper Belt
Objects, and will allow synthetic images of debris disc structures to be
quickly generated, which will be useful for predicting and interpreting disc
images made with ALMA, Darwin/TPF or similar missions. [Abridged]Comment: 19 pages, 14 figures; accepted to MNRA
Morphology of the very inclined debris disk around HD 32297
Direct imaging of circumstellar disks at high angular resolution is mandatory
to provide morphological information that bring constraints on their
properties, in particular the spatial distribution of dust. New techniques
combining observing strategy and data processing now allow very high contrast
imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and
complement space telescopes while improving angular resolution at near infrared
wavelengths. We carried out a program at the VLT with NACO to image known
debris disks with higher angular resolution in the near IR than ever before in
order to study morphological properties and ultimately to detect signpost of
planets. The observing method makes use of advanced techniques: Adaptive
Optics, Coronagraphy and Differential Imaging, a combination designed to
directly image exoplanets with the upcoming generation of "planet finders" like
GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast
Exoplanet REsearch). Applied to extended objects like circumstellar disks, the
method is still successful but produces significant biases in terms of
photometry and morphology. We developed a new model-matching procedure to
correct for these biases and hence to bring constraints on the morphology of
debris disks. From our program, we present new images of the disk around the
star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an
unprecedented angular resolution (~65 mas). The images show an inclined thin
disk detected at separations larger than 0.5-0.6". The modeling stage confirms
a very high inclination (i=88{\deg}) and the presence of an inner cavity inside
r_0~110AU. We also found that the spine (line of maximum intensity along the
midplane) of the disk is curved and we attributed this feature to a large
anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged
...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and
Astrophysic
Fine Structure of Avalanches in the Abelian Sandpile Model
We study the two-dimensional Abelian Sandpile Model on a square lattice of
linear size L. We introduce the notion of avalanche's fine structure and
compare the behavior of avalanches and waves of toppling. We show that
according to the degree of complexity in the fine structure of avalanches,
which is a direct consequence of the intricate superposition of the boundaries
of successive waves, avalanches fall into two different categories. We propose
scaling ans\"{a}tz for these avalanche types and verify them numerically. We
find that while the first type of avalanches has a simple scaling behavior, the
second (complex) type is characterized by an avalanche-size dependent scaling
exponent. This provides a framework within which one can understand the failure
of a consistent scaling behavior in this model.Comment: 10 page
- …
