337 research outputs found

    Eco-Efficient Synthesis of LiFePO4 with Different Morphologies for Li-Ion Batteries

    Get PDF
    LiFePO4 is presently the most studied electrode material for battery applications. It can be prepared via solution, although it requires well-controlled pH conditions to master the iron valence state in the newly created material. Here we report its synthesis via the use of "latent bases" capable of releasing a nitrogen base upon heating. This way of controlling the reaction pH enables, in the absence of excess Li, the preparation of Fe+3-free LiFePO4 powders having various morphologies and showing good electrochemical performance. This approach is shown to offer great opportunities for the low-temperature synthesis of various electrode materials

    The development of the Islamic investment funds with special reference to the Saudi financial market

    Get PDF
    تعتبر صناديق الاستثمار الإسلامية، احد أساليب الاستثمار الجماعي، التي تعمل على تجميع فوائض الأموال واستثمارها وفق طرق مشروعة، عن طريق جهات متخصصة ومحترفة، وذلك بغرض تنميتها والمحافظة عليها فهي مهمة للمسلمين اليوم فهي اداة ووسيلة لتحقيق التكافل الاقتصادي بين المسلمين، وذلك بتسهيل نقل المدخرات من دول الفائض الى دول العجز وان تكون توطئة لأسلة البنوك وجزءا من برنامج لتوطيد دعائم الاستثمار اللاربوي، خاصة وان الاتجاه الى هذا النوع من الاستثمار قد تزايد في الآونة الأخيرة، حيث تتصدر المملكة العربية السعودية وماليزيا القائمة بين البلدان من ناحية التعامل بهذه الادوات.Islamic investment funds, one of the methods of collective investment, which collect the surplus funds and invest them in legitimate ways, through specialized and professional bodies, for the purpose of development and maintenance, it is important for Muslims today is a tool and a means to achieve economic solidarity among Muslims, Of the surplus countries to the deficit countries and be the forerunner of the banks and part of the program to consolidate the foundations of investment Larvoy, especially as the trend to this type of investment has increased recently, where the top Saudi Arabia and Malaysia between the existing countries on the one hand Dealing with these tools

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    Get PDF
    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered

    Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Get PDF
    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1

    Defects, Dopants and Lithium Mobility in Li <sub>9</sub> v <sub>3</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub>

    Get PDF
    Layered Li9V3(P2O7)3(PO4)2 has attracted considerable interest as a novel cathode material for potential use in rechargeable lithium batteries. The defect chemistry, doping behavior and lithium diffusion paths in Li9V3(P2O7)3(PO4)2 are investigated using atomistic scale simulations. Here we show that the activation energy for Li migration via the vacancy mechanism is 0.72 eV along the c-axis. Additionally, the most favourable intrinsic defect type is Li Frenkel (0.44 eV/defect) ensuring the formation of Li vacancies that are required for Li diffusion via the vacancy mechanism. The only other intrinsic defect mechanism that is close in energy is the formation of anti-site defect, in which Li and V ions exchange their positions (1.02 eV/defect) and this can play a role at higher temperatures. Considering the solution of tetravalent dopants it is calculated that they require considerable solution energies, however, the solution of GeO2 will reduce the activation energy of migration to 0.66 eV

    Lithium diffusion in Li<sub>5</sub>FeO<sub>4</sub>

    Get PDF
    The anti-fluorite type Li5FeO4 has attracted significant interest as a potential cathode material for Li ion batteries due to its high Li content and electrochemical performance. Atomic scale simulation techniques have been employed to study the defects and Li ion migration in Li5FeO4. The calculations suggest that the most favorable intrinsic defect type is calculated to be the cation anti-site defect, in which Li+ and Fe3+ ions exchange positions. Li Frenkel is also found to be lower in this material (0.85 eV/defect). Long range lithium diffusion paths were constructed in Li5FeO4 and it is confirmed that the lower migration paths are three dimensional with the lowest activation energy of migration at 0.45 eV. Here we show that doping by Si on the Fe site is energetically favourable and an efficient way to introduce a high concentration of lithium vacancies. The introduction of Si increases the migration energy barrier of Li in the vicinity of the dopant to 0.59 eV. Nevertheless, the introduction of Si is positive for the diffusivity as the migration energy barrier increase is lower less than that of the lithium Frenkel process, therefore the activation energy of Li diffusion

    Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries

    Get PDF
    Although nickel-based polyanionic compounds are expected to exhibit a high operating voltage for batteries based on the Ni2+/3+ redox couple activity, some rare experimental studies on the electrochemical performance of these materials are reported, resulting from the poor kinetics of the bulk materials in both Li and Na nonaqueous systems. Herein, the electrochemical activity of the Ni2+/3+ redox couple in the mixed-polyanionic framework Na4Ni3(PO4)2(P2O7) is reported for the first time. This novel material exhibits a remarkably high operating voltage when cycled in sodium cells in both carbonate- and ionic liquid-based electrolytes. The application of a carbon coating and the use of an ionic liquid-based electrolyte enable the reversible sodium ion (de-)insertion in the host structure accompanied by the redox activity of Ni2+/3+ at operating voltages as high as 4.8 V vs Na/Na+. These results present the realization of Ni-based mixed polyanionic compounds with improved electrochemical activity and pave the way for the discovery of new Na-based high potential cathode materials

    Multifunctional dual Na3V2(PO4)(2)F-3 cathode for both lithium-ion and sodium-ion batteries

    Get PDF
    Na3V2(PO4)2F3 with a NASICON-type structure is shown to be synthesised with the particle surface found to be coated with amorphous carbon with its thickness in the range of 25–32 nm. The crystallographic planes (hkl) are labelled according to Density Functional Theory (DFT) calculations towards the as-prepared Na3V2(PO4)2F3. The performances of Na3V2(PO4)2F3 have been investigated in lithium- and sodium-ion batteries, exhibiting a specific capacity of 147 mA h g 1 with an average discharge plateau around 4 V vs. Li+/Li, and 111.5 mA h g 1 with three discharge plateaus in sodium-ion batteries. A predominant Li ion insertion mechanism is verified by comparing the redox potentials from CV and charge/discharge curves. It is found that the main migration from/into the crystallographic sites of Na3V2(PO4)2F3 of Li ions is favoured to obtain satisfactory properties by a two-step process, while the Na ions are found to require three steps. The stable and three-dimensional open framework of Na3V2(PO4)2F3 is considered to be vital for the excellent C-rate and cycling performances, as well as the fast ion diffusion with a magnitude of 10 11 cm2 s 1, which could demonstrate that Na3V2(PO4)2F3 is a multifunctional dual cathode for both lithium and sodium ion batteries and capable to be a promising candidate in the construction of highenergy batteries
    corecore