71 research outputs found
Galactic and Cosmic Type Ia SN rates: is it possible to impose constraints on SNIa progenitors?
We compute the Type Ia supernova rates in typical elliptical galaxies by
varying the progenitor models for Type Ia supernovae. To do that a formalism
which takes into account the delay distribution function (DTD) of the explosion
times and a given star formation history is adopted. Then the chemical
evolution for ellipticals with baryonic initial masses , and
is computed, and the mass of Fe produced by each galaxy is
precisely estimated. We also compute the expected Fe mass ejected by
ellipticals in typical galaxy clusters (e.g. Coma and Virgo), under different
assumptions about Type Ia SN progenitors. As a last step, we compute the cosmic
Type Ia SN rate in an unitary volume of the Universe by adopting several cosmic
star formation rates and compare it with the available and recent observational
data. Unfortunately, no firm conclusions can be derived only from the cosmic
SNIa rate, neither on SNIa progenitors nor on the cosmic star formation rate.
Finally, by analysing all our results together, and by taking into account
previous chemical evolution results, we try to constrain the best Type Ia
progenitor model. We conclude that the best progenitor models for Type Ia SNe
are still the single degenerate model, the double degenerate wide model, and
the empirical bimodal model. All these models require the existence of prompt
Type Ia supernovae, exploding in the first 100 Myr since the beginning of star
formation, although their fraction should not exceed 15-20% in order to fit
chemical abundances in galaxies.Comment: 17 pages, 11 figures, Submitted to MNRA
Is the interstellar gas of starburst galaxies well mixed?
The extent to which the ISM in galaxies is well mixed is not yet settled.
Measured metal abundances in the diffuse neutral gas of star--forming gas--rich
dwarf galaxies are deficient with respect to that of the ionized gas. The
reasons, if real, are not clear and need to be based on firm grounds. Far-UV
spectroscopy of giant HII regions such as NGC604 in the spiral galaxy M33 using
FUSE allows us to investigate possible systematic errors in the metallicity
derivation. We still find underabundances of nitrogen, oxygen, argon, and iron
in the neutral phase by a factor of~6. This could either be explained by the
presence of less chemically evolved gas pockets in the sightlines or by dense
clouds out of which HIIregions form. Those could be more metallic than the
diffuse medium.Comment: 4 pages, 2 figures;contribution to Starbursts: from 30 Dor to Lyman
Break Galaxies, 6 -10 September 2004, Institute of Astronomy, University of
Cambridge, U
ISM enrichment and local pollution in dwarf galaxies
The fate of metals after they are released in starburst episodes is still
unclear. What phases of the interstellar medium are involved, in which
timescales? Evidence has grown over the past few years that the neutral phase
of blue compact dwarf (BCD) galaxies may be metal- deficient as compared to the
ionized gas of their HII regions. These results have strong implications for
our understanding of the chemical evolution of galaxies. We review here the
main results and the main caveats in the abundance determination from far-UV
absorption-lines. We also discuss possible scenarios concerning the journey of
metals into the interstellar medium, or even their ejection from the galaxy
into the intergalactic medium.Comment: Long version of a proceeding for the conference "A Universe of Dwarf
Galaxies: Observations, Theories, Simulations" held in Lyon, France
(14th-18th, June 2010
Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36
We present the analysis of the interstellar spectrum of Pox 36 with the Far
Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the
relatively low foreground gas content that makes it possible to detect
absorption-lines weak enough that unseen components should not be saturated.
Interstellar lines of HI, NI, OI, SiII, PII, ArI, and FeII are detected. Column
densities are derived directly from the observed line profiles except for HI,
whose lines are contaminated by stellar absorption. We used the TLUSTY models
to remove the stellar continuum and isolate the interstellar component. The
best fit indicates that the dominant stellar population is B0. The fit of the
interstellar HI line gives a column density of 10^{20.3\pm0.4} cm-2. Chemical
abundances were then computed from the column densities using the dominant
ionization stage in the neutral gas. Our abundances are compared to those
measured from emission-line spectra in the optical. Our results suggest that
the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the
ionized gas, and they agree with a metallicity of ~1/35 Z. Conclusions:
The abundance discontinuity between the neutral and ionized phases implies that
most of the metals released by consecutive star-formation episodes mixes with
the HI gas. The volume extent of the enrichment is so large that the
metallicity of the neutral gas increases only slightly. The star-forming
regions could be enriched only by a small fraction (~1%), but it would greatly
enhance its metallicity. Our results are compared to those of other BCDs. We
confirm the overall underabundance of metals in their neutral gas, with perhaps
only the lowest metallicity BCDs showing no discontinuity.Comment: Accepted for publication in A&
Color and stellar population gradients in galaxies. Correlation with mass
We analyze the color gradients (CGs) of ~50000 nearby SDSS galaxies. From
synthetic spectral models based on a simplified star formation recipe, we
derive the mean spectral properties, and explain the observed radial trends of
the color as gradients of the stellar population age and metallicity (Z). The
most massive ETGs (M_* > 10^{11} Msun) have shallow CGs in correspondence of
shallow (negative) Z gradients. In the stellar mass range 10^(10.3-10.5) < M_*
< 10^(11) Msun, the Z gradients reach their minimum of ~ -0.5 dex^{-1}. At M_*
~ 10^{10.3-10.5} Msun, color and Z gradient slopes suddenly change. They turn
out to anti-correlate with the mass, becoming highly positive at the very low
masses. We have also found that age gradients anti-correlate with Z gradients,
as predicted by hierarchical cosmological simulations for ETGs. On the other
side, LTGs have gradients which systematically decrease with mass (and are
always more negative than in ETGs), consistently with the expectation from gas
infall and SN feedback scenarios. Z is found to be the main driver of the trend
of color gradients, especially for LTGs, but age gradients are not negligible
and seem to play a significant role too. We have been able to highlight that
older galaxies have systematically shallower age and Z gradients than younger
ones. Our results for high-mass galaxies are in perfect agreement with
predictions based on the merging scenario, while the evolution of LTGs and
younger and less massive ETGs seems to be mainly driven by infall and SN
feedback. (Abridged)Comment: 20 pages, 16 figures, accepted for publication on MNRAS. This version
includes revisions after the referee's report
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
MycoRRdb: A Database of Computationally Identified Regulatory Regions within Intergenic Sequences in Mycobacterial Genomes
The identification of regulatory regions for a gene is an important step towards deciphering the gene regulation. Regulatory regions tend to be conserved under evolution that facilitates the application of comparative genomics to identify such regions. The present study is an attempt to make use of this attribute to identify regulatory regions in the Mycobacterium species followed by the development of a database, MycoRRdb. It consist the regulatory regions identified within the intergenic distances of 25 mycobacterial species. MycoRRdb allows to retrieve the identified intergenic regulatory elements in the mycobacterial genomes. In addition to the predicted motifs, it also allows user to retrieve the Reciprocal Best BLAST Hits across the mycobacterial genomes. It is a useful resource to understand the transcriptional regulatory mechanism of mycobacterial species. This database is first of its kind which specifically addresses cis-regulatory regions and also comprehensive to the mycobacterial species. Database URL: http://mycorrdb.uohbif.in
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Eurocity London: a qualitative comparison of graduate migration from Germany, Italy and Latvia
This paper compares the motivations and characteristics of the recent migration to London of young-adult graduates from Germany, Italy and Latvia. Conceptually the paper links three domains: the theory of core–periphery structures within Europe; the notion of London as both a global city and a ‘Eurocity’; and the trope of ‘crisis’. The dataset analysed consists of 95 in-depth biographical interviews and the paper’s main objective is to tease out the narrative similarities and differences between the three groups interviewed. Each of the three nationalities represents a different geo-economic positioning within Europe. German graduates move from one economically prosperous country to another; they traverse shallow economic and cultural boundaries. Italian graduates migrate from a relatively peripheral Southern European country where, especially in Southern Italy, employment and career prospects have long been difficult, and have become more so in the wake of the financial crisis. They find employment opportunities in London which are unavailable to them in Italy. Latvian graduates are from a different European periphery, the Eastern one, post-socialist and post-Soviet. Like the Italians, their moves are economically driven whereas, for the Germans, migration is more related to lifestyle and life-stage. For all three groups, the chance to live in a large, multicultural, cosmopolitan city is a great attraction. And for all groups, thoughts about the future are marked by uncertainty and ambiguity
Tumour-associated carbohydrate antigens in breast cancer
Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed
- …