49 research outputs found

    Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS

    Get PDF
    Background Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods MOG35-55 induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results EAE disease course was slightly attenuated in male apoE-deficient (apoE −/− ) mice compared to wildtype mice (cumulative median score: apoE −/−  = 2 [IQR 0.0–4.5]; wildtype = 4 [IQR 1.0–5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE −/− mice compared to wildtype mice (cumulative median score: apoE −/−  = 3 [IQR 2.0–4.5]; wildtype = 3 [IQR 0.0–4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naïve animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses

    Biomarkers of Multiple Sclerosis

    Get PDF
    The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.publishersversionPeer reviewe

    A "Candidate-Interactome" Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis

    Get PDF
    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms

    A “Candidate-Interactome” Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis

    Get PDF
    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms

    Electrochemical properties of crystallized dilithium squarate: insight from dispersion-corrected density functional theory.

    No full text
    International audienceThe stacking parameters, lattice constants, and bond lengths of solvent-free dilithium squarate (Li(2)C(4)O(4)) crystals were investigated using density functional theory with and without dispersion corrections. The shortcoming of the GGA (PBE) calculation with respect to the dispersive forces appears in the form of an overestimation of the unit cell volume up to 5.8%. The original Grimme method for dispersion corrections has been tested together with modified versions of this scheme by changing the damping function. One of the modified dispersion-corrected DFT schemes, related to a rescaling of van der Waals radii, provides significant improvements for the description of intermolecular interactions in Li(2)C(4)O(4) crystals: the predicted unit cell volume lies then within 0.9% from experimental data. We applied this optimised approach to the screening of hypothetical framework structures for the delithiated (LiC(4)O(4)) and lithiated (Li(3)C(4)O(4)) phases, i.e. oxidized and reduced squarate forms. Their relative energies have been analysed in terms of dispersion and electrostatic contributions. The most stable phases among the hypothetical models for a given lithiation rate were selected in order to calculate the corresponding average voltages (either upon lithiation or delithiation of Li(2)C(4)O(4)). A first step towards energy partitioning in view of interpretating crystal phases relative stability in link with (de)-intercalation processes has been performed through the explicit evaluation of electrostatic components of lattice energy from atomic charges gained with the Atoms in Molecules (AIM) method

    PADI4 Gene in Multiple Sclerosis: A Family-Based Association Study

    No full text
    International audienceIn multiple sclerosis (MS) MBP is heavily citrullinated by peptidylarginine deiminase (PAD). This post-translational modification may be crucial for its pathogenesis. PADI4 is the isoform expressed in inflammatory infiltrates. The aim of this study was to analyse the role of PADI4 gene in conferring susceptibility to MS, by means of a family-based association study, testing three SNPs by RFLP. No association was found either with single SNPs or haplotypes. Similarly no significant association was detected partitioning the patients according to DRB1*15 positivity or disease severity. These results do not support a major role of the PADI4 gene, but further studies may contribute to clarify the genetic factors that regulate deimination. © 2006 Elsevier B.V. All rights reserved

    Genetic burden in multiple sclerosis families

    No full text
    A previous study using cumulative genetic risk estimations in multiple sclerosis (MS) successfully tracked the aggregation of susceptibility variants in multi-case and single-case families. It used a limited description of susceptibility loci available at the time (17 loci). Even though the full roster of MS risk genes remains unavailable, we estimated the genetic burden in MS families and assess its disease predictive power using up to 64 single-nucleotide polymorphism (SNP) markers according to the most recent literature. A total of 708 controls, 3251 MS patients and their relatives, as well as 117 twin pairs were genotyped. We validated the increased aggregation of genetic burden in multi-case compared with single-case families (P¼4.14e03) and confirm that these data offer little opportunity to accurately predict MS, even within sibships (area under receiver operating characteristic (AUROC)¼0.59 (0.55, 0.53)). Our results also suggest that the primary progressive and relapsing-type forms of MS share a common genetic architecture (P¼0.368; difference being limited to that corresponding to ±2 typical MS-associated SNPs). We have confirmed the properties of individual genetic risk score in MS. Comparing with previous reference point for MS genetics (17 SNPs), we underlined the corrective consequences of the integration of the new findings from GWAS and meta-analysis
    corecore