161 research outputs found

    Impact of terrorism and political violence on sacred sites

    Get PDF
    Over the last decade there has been an increased terrorist attacks on sacred sites and on individuals travelling to perform pilgrimage. Religious terrorism is a type of political violence motivated by an absolute belief that religious faith has authorised and commanded terrorist violence. Religious terrorists often use mass destruction as an agenda to make a politically motivated statement. Religious sacred sites suffer the most from risk of mass destruction. Terrorist organisations commit violent actions including assassination, murder, and destruction of religious sites in order to achieve their goals. ISIS and other groups often loot artefacts from sacred sites to sell them in black market in order to raise funding for their terrorist organisations. The destruction and looting of heritage sites, which are recognised as war crimes. The effects of such destruction are beyond their financial value, when these sites are destroyed, the history, the religious sentiments and the culture of a society is also destroyed. This paper evaluates and analyses different expressions of terrorism destruction of sacred sites with particular reference to the atrocities carried out over the last decade and analyses the motivations and terror philosophy of the perpetrators behind the terrorist attacks. Keywords: Religious Terrorism, religious tourists, sacred sites

    Asymmetric image encryption scheme based on Massey Omura scheme

    Get PDF
    Asymmetric image encryption schemes have shown high resistance against modern cryptanalysis. Massey Omura scheme is one of the popular asymmetric key cryptosystems based on the hard mathematical problem which is discrete logarithm problem. This system is more secure and efficient since there is no exchange of keys during the protocols of encryption and decryption. Thus, this work tried to use this fact to propose a secure asymmetric image encryption scheme. In this scheme the sender and receiver agree on public parameters, then the scheme begin deal with image using Massey Omura scheme to encrypt it by the sender and then decrypted it by the receiver. The proposed scheme tested using peak signal to noise ratio, and unified average changing intensity to prove that it is fast and has high security

    Using genetic algorithm for optimal sizing of stand-alone hybrid energy system

    Get PDF
    When planning a hybrid energy system (HES) that incorporates both renewable and non-renewable energy sources—those that rely on fossil fuels—the primary considerations are the total cost of the system and the CO? emissions. In this paper, we will investigate the typical hybrid energy system (HES) that incorporates both renewable and non-renewable energy sources involving a detailed simulation process that may require specific inputs, models, and data. Then, we employed dual optimization methods: genetic algorithm (GA) and particle swarm optimization (PSO). The consequences of GA and PSO execution in the bus timetabling problem depict that the GA algorithm is better at finding the optimal solution in terms of accuracy and iteration. Additionally, the GA algorithm is also superior to the straightforwardness of the techniques used. So, in this work, we employed a Genetic Algorithm Optimization (GA)–-based optimal sizing technique for HES configurations that include sustainability wind turbines (WTs), battery storage (BS), and diesel generators (DGs). HES improved power delivery to a rural community in the Wasit Province, Iraq, situated at 46° - 36° and 32° - 31° in the country's southeastern central region. Throughout the project's 25-year lifespan, the optimization primarily aims to minimize the total cost (CT) and total CO? emissions (ECO2T). The outcomes demonstrate that the GA algorithm may, with continuous electricity supply, minimize the objectives while meeting the load demand

    Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype

    Get PDF
    Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression

    THE UTILISATION OF VALUE BASED MANAGEMENT IN THE STRATEGIC MANAGEMENT OF GERMAN’S AUTOMOTIVE INDUSTRY

    Get PDF
    The purpose of this research paper is to analyse the value-based management commitment of automotive enterprises and to examine the factors that explain the control parameters in automotive industry. There have been a few empirical studies published in the German’s automotive sector but most of the existing studies failed to provide evidence of utilisation of value-based management in the strategic management in the automotive sector. The German automotive industry’s development is closely related to global economic developments. Previous research work has considered control parameters of enterprises but there is little evidence on the factors that explain which control parameters are used in automotive industry. A survey based on annual reports from the year 2008 to 2011 is used. In total, 20 annual reports of automotive companies were analysed. The results show that automotive companies, especially Original Equipment Manufacturers (OEMs) and listed suppliers, have committed to value-oriented management and have implemented value-oriented approaches. However, not all of the suppliers are communicating this in their reports. The results also show that Economic Value Added (EVA) is the leading key indicator in the automotive industry

    Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification

    Get PDF
    Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    Get PDF
    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules
    corecore