519 research outputs found

    Towards characterizing LNAPL remediation endpoints

    Get PDF
    Remediating sites contaminated with light non-aqueous phase liquids (LNAPLs) is a demanding and often prolonged task. It is vital to determine when it is appropriate to cease engineered remedial efforts based on the long-term effectiveness of remediation technology options. For the first time, the long term effectiveness of a range of LNAPL remediation approaches including skimming and vacuum-enhanced skimming each with and without water table drawdown was simulated through a multi-phase and multi-component approach. LNAPL components of gasoline were simulated to show how component changes affect the LNAPL\u27s multi-phase behaviour and to inform the risk profile of the LNAPL. The four remediation approaches along with five types of soils, two states of the LNAPL specific mass and finite and infinite LNAPL plumes resulted in 80 simulation scenarios. Effective conservative mass removal endpoints for all the simulations were determined. As a key driver of risk, the persistence and mass removal of benzene was investigated across the scenarios. The time to effectively achieve a technology endpoint varied from 2 to 6 years. The recovered LNAPL in the liquid phase varied from 5% to 53% of the initial mass. The recovered LNAPL mass as extracted vapour was also quantified. Additional mass loss through induced biodegradation was not determined. Across numerous field conditions and release incidents, graphical outcomes provide conservative (i.e. more prolonged or greater mass recovery potential) LNAPL remediation endpoints for use in discussing the halting or continuance of engineered remedial efforts

    Towards a digital twin for characterising natural source zone depletion: A feasibility study based on the Bemidji site

    Get PDF
    Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) may be a valid long-term management option at petroleum impacted sites. However, its future long-term reliability needs to be established. NSZD includes partitioning, biotic and abiotic degradation of LNAPL components plus multiphase fluid dynamics in the subsurface. Over time, LNAPL components are depleted and those partitioning to various phases change, as do those available for biodegradation. To accommodate these processes and predict trends and NSZD over decades to centuries, for the first time, we incorporated a multi-phase multi-component multi-microbe non-isothermal approach to representatively simulate NSZD at field scale. To validate the approach we successfully mimic data from the LNAPL release at the Bemidji site. We simulate the entire depth of saturated and unsaturated zones over the 27 years of post-release measurements. The study progresses the idea of creating a generic digital twin of NSZD processes and future trends. Outcomes show the feasibility and affordability of such detailed computational approaches to improve decision-making for site management and restoration strategies. The study provided a basis to progress a computational digital twin for complex subsurface systems

    Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents

    Get PDF
    Acute large volume spills from storage tanks of petroleum hydrocarbons as light non aqueous phase liquids (LNAPLs) can contaminate soil and groundwater and may have the potential to pose explosive and other risks. In consideration of an acute LNAPL release scenario, we explore the value of a rapid remediation response, and the value of installing remediation infrastructure in close proximity to the spill location, in effecting greater recovery of LNAPL mass from the subsurface. For the first time, a verified three-dimensional multi-phase numerical framework and supercomputing resources was applied to explore the significance of in-time and in-place remediation actions. A sand aquifer, two release volumes and a low viscosity LNAPL were considered in key scenarios. The time of commencement of LNAPL remediation activities and the location of recovery wells were assessed requiring asymmetric computational considerations. The volume of LNAPL released considerably affected the depth of LNAPL penetration below the groundwater table, the radius of the plume over time and the recoverable LNAPL mass. The remediation efficiency was almost linearly correlated with the commencement time, but was a non-linear function of the distance of an extraction well from the spill release point. The ratio of the recovered LNAPL in a well located at the centre of the spill/release compared to a well located 5 m away was more than 3.5, for recovery starting only 7 days after the release. Early commencement of remediation with a recovery well located at the centre of the plume was estimated to recover 190 times more LNAPL mass than a one-month delayed commencement through a well 15 m away from the centre of the LNAPL plume. Optimally, nearly 40% of the initially released LNAPL could be recovered within two months of commencing LNAPL recovery actions

    Evaluating an analytical model to predict subsurface LNAPL distributions and transmissivity from current and historic fluid levels in groundwater wells: Comparing results to numerical simulations

    Get PDF
    A recent analytical model predicts free, entrapped, and residual LNAPL saturations and the LNAPL transmissivity in the subsurface from current and historic fluid levels in groundwater wells. As such, the model accounts for effects of fluid level fluctuations in a well. The model was developed to predict LNAPL specific volumes and transmissivities from current fluid level measurements in wells and either recorded historic fluid level fluctuations in wells or estimates. An assumption is made in the model that the predictions are not dependent on whether the historic highest or lowest fluid level elevations in a well occur first. To test the assumption, we conduct two simulations with a modified multiphase flow numerical code TMVOC that incorporates relative permeability-saturation-capillary head relations employed in the model. In one simulation, the initial condition is for fluid levels in a well at the historic highest elevations. In the other simulation, the initial condition is for fluid levels in a well at the historic lowest elevations. We change the boundary conditions so both historical conditions occur followed by generating the current condition. Results from the numerical simulations are compared to model predictions and show the assumption in the analytical model is reasonable. The analytical model can be used to develop/refine conceptual site models and for assessing potential LNAPL recovery endpoints, especially on sites with fluctuating fluid levels in wells

    Natural source zone depletion of LNAPL: A critical review supporting modelling approaches

    Get PDF
    Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation. Prediction of long-term NSZD trends requires linking physicochemical partitioning and transport processes with bioprocesses at multiple scales within a modelling framework. Here we expand and build on the knowledge base of a recent review of NSZD, to establish the key processes and understanding required to model NSZD long term. We describe key challenges to our understanding, inclusive of the dominance of methanogenic or aerobic biodegradation processes, the potentially changeability of rates due to the weathering profile of LNAPL product types and ages, and linkages to underlying bioprocesses. We critically discuss different scales in subsurface simulation and modelling of NSZD. Focusing on processes at Darcy scale, 36 models addressing processes of importance to NSZD are investigated. We investigate the capabilities of models to accommodate more than 20 subsurface transport and transformation phenomena and present comparisons in several tables. We discuss the applicability of each group of models for specific site conditions

    The Enigmatic Young Low-Mass Variable TWA 30

    Get PDF
    TWA 30 is a remarkable young (7+/-3 Myr), low-mass (0.12+/-0.04 Msun), late-type star (M5+/-1) residing 42+/-2 pc away from the sun in the TW Hydrae Association. It shows strong outflow spectral signatures such as [S II], [O I], [O II], [O III], and Mg I], while exhibiting weak Halpha emission (-6.8+/-1.2 Angstroms). Emission lines of [S II] and [O I] are common to T Tauri stars still residing in their natal molecular clouds, while [O III] and Mg I] emission lines are incredibly rare in this same population; in the case of TWA 30, these latter lines may arise from new outflow material colliding into older outflow fronts. The weak Halpha emission and small radial velocity shifts of line emission relative to the stellar frame of rest (generally <=10 km/s) suggest that the disk is viewed close to edge-on and that the stellar axis may be inclined to the disk, similar to the AA Tau system, based on its temporal changes in emission/absorption line strengths/profiles and variable reddening (A_V=1.5-9.0). The strong Li absorption (0.61+/-0.13 Angstroms) and common kinematics with members of the TWA confirm its age and membership to the association. Given the properties of this system such as its proximity, low mass, remarkable outflow signatures, variability, and edge-on configuration, this system is a unique case study at a critical time in disk evolution and planet-building processes.Comment: ApJ in press, 51 pages, 8 tables, 12 figures; converted to preprint style since emulateapj version cut off Tables 4-

    A T8.5 Brown Dwarf Member of the Xi Ursae Majoris System

    Get PDF
    The Wide-field Infrared Survey Explorer has revealed a T8.5 brown dwarf (WISE J111838.70+312537.9) that exhibits common proper motion with a solar-neighborhood (8 pc) quadruple star system - Xi Ursae Majoris. The angular separation is 8.5 arc-min, and the projected physical separation is about 4000 AU. The sub-solar metallicity and low chromospheric activity of Xi UMa A argue that the system has an age of at least 2 Gyr. The infrared luminosity and color of the brown dwarf suggests the mass of this companion ranges between 14 and 38 Jupiter masses for system ages of 2 and 8 Gyr respectively.Comment: AJ in press, 12 pages LaTeX with 6 figures. More astrometric data and a laser guide star adaptive optics image adde

    Gut Mechanisms Linking Intestinal Sweet Sensing to Glycemic Control

    Get PDF
    Copyright © 2018 Kreuch, Keating, Wu, Horowitz, Rayner and Young. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Sensing nutrients within the gastrointestinal tract engages the enteroendocrine cell system to signal within the mucosa, to intrinsic and extrinsic nerve pathways, and the circulation. This signaling provides powerful feedback from the intestine to slow the rate of gastric emptying, limit postprandial glycemic excursions, and induce satiation. This review focuses on the intestinal sensing of sweet stimuli (including low-calorie sweeteners), which engage similar G-protein-coupled receptors (GPCRs) to the sweet taste receptors (STRs) of the tongue. It explores the enteroendocrine cell signals deployed upon STR activation that act within and outside the gastrointestinal tract, with a focus on the role of this distinctive pathway in regulating glucose transport function via absorptive enterocytes, and the associated impact on postprandial glycemic responses in animals and humans. The emerging role of diet, including low-calorie sweeteners, in modulating the composition of the gut microbiome and how this may impact glycemic responses of the host, is also discussed, as is recent evidence of a causal role of diet-induced dysbiosis in influencing the gut-brain axis to alter gastric emptying and insulin release. Full knowledge of intestinal STR signaling in humans, and its capacity to engage host and/or microbiome mechanisms that modify glycemic control, holds the potential for improved prevention and management of type 2 diabetes
    corecore