
PERSPECTIVE
published: 04 December 2018

doi: 10.3389/fendo.2018.00741

Frontiers in Endocrinology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 741

Edited by:

Sandhya Srikant Visweswariah,

Indian Institute of Science (IISc), India

Reviewed by:

Miles Douglas Thompson,

Rady Children’s Hospital-San Diego,

University of California, San Diego,

United States

Guillermo Romero,

University of Pittsburgh, United States

*Correspondence:

Richard L. Young

richard.young@adelaide.edu.au

Specialty section:

This article was submitted to

Cellular Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 05 July 2018

Accepted: 22 November 2018

Published: 04 December 2018

Citation:

Kreuch D, Keating DJ, Wu T,

Horowitz M, Rayner CK and Young RL

(2018) Gut Mechanisms Linking

Intestinal Sweet Sensing to Glycemic

Control. Front. Endocrinol. 9:741.

doi: 10.3389/fendo.2018.00741

Gut Mechanisms Linking Intestinal
Sweet Sensing to Glycemic Control

Denise Kreuch 1, Damien J. Keating 2,3, Tongzhi Wu 1, Michael Horowitz 1,

Christopher K. Rayner 1 and Richard L. Young 1,3*

1 Faculty of Health and Medical Sciences & Centre of Research Excellence in Translating Nutritional Science to Good Health,

Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia, 2College of Medicine and Public Health,

Flinders University, Bedford Park, SA, Australia, 3Nutrition and Metabolism, South Australian Health and Medical Research

Institute, Adelaide, SA, Australia

Sensing nutrients within the gastrointestinal tract engages the enteroendocrine cell

system to signal within the mucosa, to intrinsic and extrinsic nerve pathways, and the

circulation. This signaling provides powerful feedback from the intestine to slow the

rate of gastric emptying, limit postprandial glycemic excursions, and induce satiation.

This review focuses on the intestinal sensing of sweet stimuli (including low-calorie

sweeteners), which engage similar G-protein-coupled receptors (GPCRs) to the sweet

taste receptors (STRs) of the tongue. It explores the enteroendocrine cell signals

deployed upon STR activation that act within and outside the gastrointestinal tract, with

a focus on the role of this distinctive pathway in regulating glucose transport function via

absorptive enterocytes, and the associated impact on postprandial glycemic responses

in animals and humans. The emerging role of diet, including low-calorie sweeteners, in

modulating the composition of the gut microbiome and how this may impact glycemic

responses of the host, is also discussed, as is recent evidence of a causal role of

diet-induced dysbiosis in influencing the gut-brain axis to alter gastric emptying and

insulin release. Full knowledge of intestinal STR signaling in humans, and its capacity

to engage host and/or microbiome mechanisms that modify glycemic control, holds the

potential for improved prevention and management of type 2 diabetes.
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mellitus

INTRODUCTION

It is now widely recognized that the gastrointestinal tract is a major determinant of metabolic
homeostasis, and the largest endocrine organ of the body. This is due to the diversity and wide
signaling repertoire of the gastrointestinal enteroendocrine cells (EECs) which can, collectively,
release over 30 different peptide hormones and neurotransmitters (1). To subserve this signaling
function gastrointestinal EECs are configured either as “open” cells—possessing long, slim,
finger-like extensions on their apical side to sense the luminal milieu and, in turn, release signaling
molecules, or as “closed” cells which do not access the lumen, but can respond indirectly to luminal
content (2). EEC have classically been sub-divided according to their hormone or transmitter
content, and regional location within the gastrointestinal tract. However, the substantial overlap
in transcriptional expression and subcellular stores that has recently been identified now supports
a more heterogeneous EEC population (3, 4).
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EECS RESPOND TO INTESTINAL
CARBOHYDRATES

Exposure to luminal glucose generates signals that have a
profound influence on intestinal motor and absorptive function.
These signals include release of the gut peptides glucose-
dependent insulinotropic polypeptide (GIP) from K-cells located
in the proximal intestine and glucagon-like peptide-1 and 2
(GLP-1, GLP-2) from L-cells located in more distal regions of
the intestine (5, 6), and release of the bioamine serotonin (5-
HT) from enterochromaffin (EC) cells located throughout the
gastrointestinal tract (7–9). GLP-1 andGIP, the “íncretin” peptide
hormones, are degraded rapidly upon release by the ubiquitous
enzyme dipeptidyl peptidase-IV and neutral endopeptidase, with
<50% of secreted hormone entering the circulation. However,
they powerfully augment glucose-dependent insulin release in
response to an enteral glucose load (in comparison to an
intravenous isoglycemic glucose load) (10, 11). GLP-1 and 5-
HT also activate GLP-1 and 5-HT3 receptors on intestinal vagus
nerve endings as key signals in the “gut-brain axis,” which, in
turn, triggers vagal reflexes to slow the subsequent emptying of
carbohydrate from the stomach, and induce satiation (12, 13).
Accordingly, the release of GLP-1, GIP, and 5-HT is crucial to the
regulation of postprandial glycemia. In contrast, GLP-2, which is
co-released with GLP-1, is intestinotrophic and a potent signal to
upregulate the expression and function of the primary intestinal
glucose transporter, sodium-glucose cotransporter-1 (SGLT-1)
(14).

SWEET TASTE MACHINERY

Lingual Sweet Taste
All known sweet tastants, including hexose sugars, D-amino
acids, sweet proteins (such as monellin and thaumatin), and
low-calorie sweeteners (LCS) are sensed by a single broadly-
tuned sweet taste receptor (STR), comprised of a heterodimer
of class C, G-protein coupled receptors, T1R2, and T1R3 (15).
In lingual sweet taste cells, where sweet taste transduction has
been most fully characterized, the interaction of sweet tastants
with STRs initiates dissociation of the G-protein, gustducin,
into Gα and Gβγ subunits and activation of phospholipase C
β2 (PLCβ2); intracellular Ca2+ is then released from inositol
1,4,5-trisphosphate-sensitive (IP3) stores, leading to opening
of the melastatin type-5 transient receptor potential cation
channel (TRPM5) to sodium influx [for review, see (16)].
Increases in intracellular Na+ and Ca2+ then depolarize the
basolateral membrane and, via 5-HT and ATP-dependent
pathways, activate intermediary taste cells and chorda tympani
and glossopharyngeal nerves that convey taste information
centrally to the insular cortex [for review, see (17)] (18–20).

Intestinal Sweet Taste
STRs are well-described on subsets of EEC in the proximal small
intestine, with evidence of STR-equipped K-cells, L-cells, and EC
cells in humans (21, 22). STRs are also documented widely in
metabolic tissues that sense and respond to carbohydrates, such
as pancreatic β-cells, hepatocytes, adipocytes, and hypothalamic

neurons [for review, see (23, 24)]. Expression of intestinal STR,
like many GPCR, is of low magnitude, and optimally detected
with high sensitivity SYBR-based PCR approaches rather than
Taq-based PCR. Evidence in rodents, and in human cells and
tissues, provides strong support that intestinal STRs function
as upstream sensors linked to the release of GLP-1 from L-
cells, and 5-HT from EC cells, and genetic deletion of T1R3,
or pharmacological blockade of STRs with lactisole, decreases
glucose and LCS-evoked GLP-1 and 5-HT release (21, 25–27).
This is also true for GLP-2 release, which is STR-dependent in
rodents (28, 29) and inhibited by the murine STR inhibitor,
gurmarin (30).

Clinical studies have also reported acute effects of LCS to
augment GLP-1 release in the presence of glucose and have
shown a dose-dependent effect of lactisole to attenuate glucose-
induced GLP-1 release in healthy subjects (31–34). Despite this,
the balance of clinical evidence indicates that, at least in acute
settings, LCS do not contribute substantially to the circulating
pool of GLP-1 in humans (35–37).

Interplay Between STRs and SGLT-1 Can
Regulate Glycemic Responses
Enterocytes account for around 90% of all intestinal epithelial
cells and are polarized cells consisting of apical and basolateral
membrane domains (38). These cells transport nutrients from
the gut lumen to the circulation, and for glucose, apical SGLT-
1 is the primary intestinal glucose transporter in both humans
and animals. SGLT-1 is expressed primarily in the small intestine
with highest density in the jejunum followed by the duodenum
and then ileum (39, 40). SGLT-1 enables glucose absorption
by co-transporting sodium along the electrochemical gradient
established by the basolateral sodium-potassium ATPase (38, 41).
Glucose then enters the systemic circulation via the facilitative
monosaccharide transporter, GLUT2, located on the basolateral
membrane of enterocytes; GLUT2 is bidirectional and capable of
moving glucose in or out of enterocytes depending on glucose
concentration gradients (38).

Importantly, transport of the monosaccharide substrates
of SGLT-1 (e.g., glucose and galactose) triggers incretin
hormone secretion (20), an action attenuated when SGLT-1
is pharmacologically inhibited with the competitive antagonist
phlorizin, or absent through genetic deletion in rodents (42, 43).
Our group provided the first evidence that SGLT-1 substrates,
even if not metabolized (such as the glucose analog 3-O-methyl-
glucose, 3-OMG), have the capacity to stimulate GLP-1 and
GIP secretion in humans (44). We have also established that
SGLT-1-based transport is critical for ex vivo release of GLP-1 in
human ileum, while blocking SGLT-1 with phlorizin or replacing
extracellular Na+ with N-methyl-D-glucamine abolishes this
response (26).

In animals, a wide range of sweet stimuli are capable of
upregulating SGLT-1 expression and function, including LCS
(45–48), indicating that SGLT-1 activity is modulated by an
upstream and broadly tuned sweet taste sensor. Accordingly,
STRs may have the capacity to stimulate gut hormone release
both directly, and indirectly by augmenting SGLT-1 function.
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The latter is evidenced in mice lacking T1R3 or α-gustducin,
where SGLT-1 expression and function are not increased in
response to dietary glucose or LCS supplementation as occurs
in control mice (42). Moreover, the 3-fold increase in jejunal
SGLT-1 expression following 4 days of sucralose gavage (100mg,
twice-daily) in control mice was absent in our mice lacking both
T1R2 and T1R3 subunits of the STR (Marino Z, Young RL;
Figure 1). Together, these experiments attest to the importance
of intestinal STRs in regulating SGLT-1 function in mice, and
support the notion that LCS can potentiate postprandial glycemic
excursions via STR-dependent gains in SGLT-1 function and
glucose absorption, in response to habitual consumption of
sugars or LCS (Figure 2).

There is evidence that enteric neurons link glucose sensing in
EEC to glucose transport function in enterocytes (50). Studies
in rodents have shown that intestinal areas adjacent to regions
exposed to LCS have increased SGLT-1 expression (46). This
communication between STR-equipped L cells and SGLT-1-
bearing absorptive enterocytes is likely to involve gut hormone
intermediaries, such as GLP-1 and/or GLP-2. Indeed, GLP-2
receptors are present on enteric neurons in guinea pig ileum,
mouse jejunum, mouse and pig intestine (20, 51, 52) and
absorptive enterocyte progenitors in mouse jejunum respond to
GLP-2 in an enteric neuron-dependent manner (52). GLP-2 is
also capable of upregulating SGLT-1 expression in vivo (28), and
STR-dependent release of both GLP-1 and GLP-2 is detected at
higher concentrations in the portal and lymphatic circulation
than the systemic circulation in rodents (28, 53). This indicates
that local release of either mediator in response to sweet stimuli,
including LCS, may be sufficient to increase SGLT-1 function. It
may also, in part, explain the equivocal nature of human data on
LCS-evoked gut hormone release, as paracrine signaling in the
mucosa could occur in the absence of a substantial contribution
to circulating hormone levels. To this end, we provided the first
evidence that LCS evoke ex vivo GLP-1 release from human ileal
tissue (26). However, the precise signal transduction pathways
utilized by LCS to trigger gut hormone release in human mucosa
remain to be identified.

An increase in SGLT-1 protein in the apical brush border of
enterocytes occurs in a cyclic AMP (cAMP)-dependent manner
in response to transduction of basolateral signals (54, 55), and
secondary to an increase in SGLT-1 transcription (56) and
stabilization (increased half-life) of the 3′-untranslated region
of the SGLT-1 transcript (57, 58). This facilitates an increase in
apical SGLT-1 protein translation and insertion in response to
gut hormone signaling. Jugular vein infusion of GLP-2 increases
the abundance of SGLT-1 protein and rate of SGLT-1-dependent
glucose transport in the apical membrane of jejunal enterocytes
in rats, a response abolished when protein translocation is
inhibited with brefeldin (29, 59). This highlights the importance
of GLP-2 in the regulation of SGLT-1 function at the apical brush
border membrane.

While enteric neurons express receptors for other gut
hormones, including GIP, GIP is unlikely to be responsible for
glucose or LCS effects on SGLT-1 (20, 60). GIP receptor knockout
and wild type mice show similar increases in jejunal SGLT-
1 expression on a high carbohydrate diet, compared to mice

FIGURE 1 | STR-dependence of SGLT-1 expression in mice. Increased jejunal

expression of SGLT-1 mRNA in 10 week-old control (WT/WT) mice gavaged

for 4 days with sucralose (black bars) compared to water (white bars), and to

mice homozygous for both Tas1r2 and Tas1r3 genes (KO/KO). Breeding pairs

of mice homozygous for the Tas1r2 or Tas1r3 gene (129X1/SvJ mice

backcrossed for at least 3 generations with C57BL/6 mice) were provided by

Prof Charles Zuker (University of California, San Diego, USA). Mice

homogenous for each gene were then paired to produce mice heterozygous

for Tas1r2 and Tas1r3. These mice, in turn, were paired to generate mice

heterozygous, homozygous, and wild-type for both genes. From these mice,

double homozygous (KO/KO) and wild-type littermate controls (WT/WT) were

the subject of gavage experiments. Ten-week old male mice (N = 5 per group)

maintained under standard housing and diet conditions in the SA Pathology

Animal Care Facility were gavaged twice daily with 100mg sucralose (Redox

Chemicals, Minto, NSW Australia) in 200 µL water, or 200 µL water, at 0800

and 1800 over 4 days. These mice were fasted overnight then humanely killed

at 0800, total RNA extracted from the jejunal mucosa, and real-time RT-PCR

performed using primer assays for SGLT-1 (QT00112679) and β-actin

(QT01136772, Qiagen, Sydney, NSW Australia) relative to expression of

β-actin, as described (49); SGLT-1 expression was compared between groups

and gavage regime by analysis of variance (ANOVA), adjusted for multiple

comparisons by Holm-Sidak’s correction (GraphPad Prism 7.02, San Diego,

CA, USA). This experiment was approved and performed in accordance with

guidelines of the Animal Ethics Committees of The University of Adelaide and

SA Pathology (Adelaide, Australia). Data is shown as Mean ± SEM; ** P <

0.01. We thank Prof Charles Zuker for generously supplying the homozygous

Tas1r2 and Tas1r3 mice.

on a low carbohydrate diet (20). Irrespective of which mucosal
mediator is a trigger upon intestinal STR activation, the interplay
between these broadly-tuned receptors and SGLT-1 is critical for
glucose absorption and represents a major mechanism regulating
overall glycemic control.

TYPE 2 DIABETES IS ASSOCIATED WITH
STR DYSREGULATION

Globally, over 400 million people are living with diabetes,
projected to rise to over 600 million by 2040 (61). Effective
control of glycemia, as assessed by glycated hemoglobin (HbA1c)
<6.5–7.0% (48–53 mmol/mol), is important to minimize the
risk of the development and progression of microvascular
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FIGURE 2 | Model of intestinal sweet taste sensing and signaling effectors. Sweet stimuli, including LCS, bind to STR comprised of a heterodimer of G-protein

coupled receptors T1R2 and T1R3. Upon receptor binding an intracellular signaling cascade is activated, initiated by dissociation of G-protein gustducin into Gα and

Gβγ subunits and activation of phospholipase C β2 (PLCβ2); intracellular Ca
2+ is then released from inositol 1,4,5-trisphosphate-sensitive stores, leading to opening

of the melastatin type-5 transient receptor potential cation channel (TRPM5) to sodium influx. Increases in intracellular Na+ and Ca2+ then depolarize the basolateral

membrane, to facilitate release of peptide hormones such as GLP-2. GLP-2 may then trigger an enteric neuron pathway to release an unknown neuropeptide at

nearby absorptive enterocytes leading to adenylate cyclase-dependent stablilization of the 3’ end of SGLT-1 mRNA (to increase half-life), and SGLT-1 translation and

insertion into the apical brush border membrane.

complications (i.e., eye, kidney, and nerve damage), and to
a lesser extent, macrovascular complications. In the majority
of patients with type 2 diabetes, who are relatively well-
controlled, postprandial glycaemic excursions predominate over
fasting blood glucose levels in contributing to HbA1c (62),
and are determined by meal composition, the rate of gastric
emptying, hepatic and peripheral glucose metabolism, intestinal
glucose absorption, and insulin secretion and resistance (63).
Meal-related secretion of insulin is augmented through the
insulinotropic actions of the incretin hormones GIP and GLP-
1 to reduce postprandial glycemic excursions in health (64,
65); in type 2 diabetes, a markedly attenuated insulinotropic
action of GIP (66) and, in some cases, attenuated secretion
of GLP-1 (67), contribute to an impairment of postprandial
insulin secretion, so that the latter is insufficient to maintain
euglycaemia. Furthermore, gut-derived 5-HT can also modulate
glucose and energy homeostasis (68–70), and is augmented in
patients with type 2 diabetes (71) and the obese (9).

The recognition that the gut, and EEC signals, are major
determinants of glycemic control is attested to by the successful
deployment of incretin-based therapies for type 2 diabetes. These
include mimetics of GLP-1, GLP-1/GIP dual receptor agonists,
and inhibitors of dipeptidyl peptidase-IV, which inactivates

endogenous GLP-1 (72). These pharmaceutical compounds have
improved clinical management of type 2 diabetes substantially,
but their use is compromised by cost, compliance with
administration, adverse gastrointestinal effects, or suboptimal
efficacy in some patients.

While experiments in animal models and patients with
type 2 diabetes have shown a gain in function of SGLT-1
and corresponding increase in the rate of intestinal glucose
absorption (73, 74), the targeting of intestinal glucose absorption
has received comparatively little attention. Indeed, it is likely that
a proportion of the clinical benefits of the anti-diabetic gliflozin-
class agents (SGLT-2 inhibitors) are due to actions at intestinal
SGLT-1. This is particularly true for first-in-class examples, such
as the dual SGLT-1/SGLT-2 inhibitor sotagliflozin, which has
lower selectivity for SGLT-2 and acts beyond inhibition of renal
glucose reabsorption by SGLT-2 to induce partial inhibition
of intestinal SGLT-1, leading to augmented GLP-1 and insulin
secretion, and a reduction in postprandial glucose excursions
(75).

To assess whether regulation of intestinal STR was disrupted
in patients with type 2 diabetes, and had an unfavorable
impact on glucose absorption and postprandial hyperglycemia,
we compared intestinal STR expression in individuals with and
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without type 2 diabetes. We first established that STRs were
expressed at similar levels in the duodenum in both groups
when sampled at euglycemia (49). However, we found that T1R2
expression was decreased following enteral glucose exposure
under hyperglycemic conditions in non-diabetic subjects, but
remained elevated in patients with type 2 diabetes, where
it was linked to an increase in glucose absorption (assessed
by serum levels of 3-OMG which had been co-administered
with the glucose load) (22). These findings support the
notion that intestinal STR dysregulation in type 2 diabetes
can exacerbate postprandial glycemic excursions. Furthermore,
given that patients with type 2 diabetes are 3-fold more
likely to consume beverages sweetened with LCS than healthy
individuals (76), it is possible that high dietary LCS consumption
contributes to, rather than alleviates, postprandial glycemic
dysregulation.

LOW-CALORIE SWEETENERS AND
GLYCEMIC CONTROL

Sugar-sweetened beverages contain high levels of sucrose or high
fructose corn syrup (77) and represent a major source of added
sugars in western diets. They account for around 16% of daily
caloric intake of adults in the United States (78) and 11% in
Canada and Australia (79), a level that exceeds the World Health
Organization recommendation that added sugar consumption
should be limited to 10% of daily caloric intake (80). These
sugars are rapidly absorbed by the small intestine to increase
glycemic load, which, when associated with increased peripheral
insulin resistance, increases the risk of developing type 2
diabetes (81).

The outcomes of epidemiological studies indicate that high
and habitual consumption of sugar-sweetened beverages is
associated with an increased risk of developing type 2 diabetes,
independent of total energy intake or body mass (77, 82). While
these findings do not establish causality (83, 84), the adverse
health outcomes linked to high sugar consumption have led
to changes in global health policy to limit such intake, with
several countries now implementing a sugar tax (80, 85). Not
surprisingly, beverages sweetened with LCS have become a
popular alternative.

Diet beverages contain a single LCS, or more frequently,
LCS combinations, in place of sugars (86), with specific LCS
commonly identified by their European Food Safety Authority E-
number, i.e., aspartame (E951), sucralose (E955), and acesulfame-
K (E950). LCS differ substantially in their oral bioavailability and,
therein, exposure to intestinal regions and their microbiota. For
example, aspartame is completely hydrolyzed in the proximal
intestine to methanol and constituent amino acids, aspartate
and phenylalanine, and has no effective oral bioavailability or
exposure to the distal intestine and its microbiota. Sucralose has
low oral bioavailability (around 15%), but full exposure to the
intestine and microbiota due to excretion in largely unchanged
form in feces; minor absorbed sucralose and glucoronidation
end-products undergo renal excretion. Finally, acesulfame-K has
high oral bioavailability (90–100%) due to rapid absorption in the

proximal intestine and has limited exposure to the distal intestine
and its microbiota; acesulfame-K is cleared via renal excretion in
largely unchanged form [for reviews, see (87–89)]. These distinct
properties should be considered in interpreting effects of LCS
both within, and outside, the gastrointestinal tract.

LCS are 200 to 13,000 times sweeter than sucrose by weight,
and were expected to be beneficial in the setting of obesity
and type 2 diabetes due to their low calorie content. There is,
however, only equivocal evidence of this benefit, with several
epidemiological studies indicating little or no benefit, or even
an increased risk of weight gain (90–92). Moreover, some
epidemiological studies suggest that a high habitual intake of
beverages sweetened with LCS is associated with an increased
risk of developing type 2 diabetes (93–97). Reverse causality (e.g.,
people opting for LCS-sweetened beverages in response to weight
gain and/or obesity, or subclinical disease including pre-diabetes)
is unlikely to fully account for the increased risk, which is evident
even after adjusting for differences in body mass and energy
intake. Furthermore, two studies have reported an elevated risk of
developing type 2 diabetes in normal weight individuals (93, 97).

The outcomes of studies that have prospectively investigated
the effects of LCS intake on long-term glycaemic control
(assessed by HbA1c) or insulin resistance have been equivocal,
and several failed to adjust for differences in sugar intake (76, 98–
102). Despite this, high habitual patterns of LCS consumption
have been reported to increase HbA1c levels in healthy adults,
independent of body mass (101), while daily LCS consumption
has been dose-dependently associated with HbA1c increases
in type 2 diabetes (76). A negative impact of LCS on acute
glycemic control has also been shown in obese individuals, where
a sucralose preload consumed in advance of an oral glucose
tolerance test augmented blood glucose levels over the following
5 h substantially, when compared to water or no preload (103).

Collectively, the potential for LCS to impair glycemic control
remains uncertain, in large part due to the small number of
prospective clinical studies (104, 105). Proposed mechanisms
linking LCS to an increased risk of developing type 2 diabetes
in humans include a reduced fidelity of central responses to
nutritive stimuli, effects on gut microbiota, and an effect of LCS
to augment glucose absorption.

We recently reported early findings of a randomized
placebo-controlled clinical study investigating the effect of
diet supplementation with combined LCS (sucralose 276mg,
acesulfame-K 156mg in capsules; equivalent to 1.5 L diet
beverage/day) over 2 weeks on glycemic responses to enteral
glucose. We observed a clinically significant effect of LCS
to increase the rate of glucose absorption and augment
blood glucose responses to enteral glucose in healthy subjects
consuming LCS, relative to placebo. Moreover, glucose-evoked
GLP-1 and GLP-2 release was decreased in LCS-consuming
participants, which may relate to the more rapid proximal
absorption of glucose limiting the exposure of more distally
located L-cells (106). These findings indicate a negative impact
of habitual high LCS intake on glucose absorption and acute
glycaemic control in health, and add support for the concept
that high habitual intake of LCS may increase the magnitude of
postprandial glycemic excursions.
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LCS AND THE GUT MICROBIOME

The gut microbiome comprises the diverse range of bacteria,
yeasts, and other microorganisms which exist in a largely
symbiotic relationship with the host (107). These prevent
potentially harmful microorganisms from colonizing the gut by
competing for energy resources (108). Use of these resources
liberates nutrients which would be otherwise inaccessible to the
host, i.e., microbial conversion of indigestible polysaccharides
to short chain fatty acids (SCFAs) such as acetate, propionate,
and butyrate, which act as substrates for cellular metabolism,
gluconeogenesis and lipogenesis. Moreover, SCFAs play a crucial
role in satiety signaling, and modulate appetite directly and
indirectly via leptin synthesis in adipose tissue (109). SCFAs
also have a beneficial impact on glycemia, with propionate
shown to improve insulin sensitivity, and butyrate to prevent
or improve insulin resistance in mice fed a high fat diet (110–
112). Microbial-derived signals from the gut, therefore, have the
potential to influence glycemic control substantially.

The composition of the gut microbiome of individuals with
type 2 diabetes differs from that of non-diabetic individuals,

in its relative and BMI-independent decrease in abundance of
species from the Clostridium phylum (113, 114). These species
are negatively correlated with markers of poor glycemic control
such as fasting glucose, HbA1c and insulin, but positively
correlated with the insulin sensitizing hormone adiponectin
(113). Alterations in the gut microbiome of individuals with
type 2 diabetes are also associated with changes in functional
microbial genes, with a specific enrichment of pathways for
starch, glucose, fructose, and mannose metabolism, which
increases the potential for energy harvest and metabolism
(113). These changes are causally related to the development of
insulin insensitivity and resistance, as allogenic transplantation
of intestinal microbiota from lean donors to recipients with
the metabolic syndrome improved insulin sensitivity (115). This
highlights the importance of the gut microbiome composition
with respect to the development ofmetabolic disorders, including
type 2 diabetes.

Exposure to LCS has been shown to drive glucose intolerance
in mice via a LCS-dependent shift in composition of the gut
microbiome (“dysbiosis”). Transplantation of fecal microbiota
from donor mice supplemented chronically with LCS (saccharin)

FIGURE 3 | Gastrointestinal factors influencing glycemic control. Dietary sweet stimuli can activate STR in the proximal intestine facilitating the enteroendocrine cell

release of the incretin peptides GIP from K-cells and GLP-1 from L-cells, as well as 5-HT from EC-cells; substrates of SGLT-1 (glucose, galactose) also trigger GIP and

GLP-2 release. GIP and GLP-1 stimulate glucose-dependent insulin release, to increase glucose disposal; GLP-1 and 5-HT also slow the rate of gastric emptying via

vagus nerve signals (not shown) while GLP-1 inhibits pancreatic glucagon release, leading to reduced hepatic glucose output. GLP-2 co-released from L-cells acts to

increase intestinal glucose absorption via an increase in the capacity for SGLT-1-based glucose transport. Dietary sweet stimuli can also alter the composition of the

gut microbiome in favor of colonization of gut pathogens over fermentative gut commensals, which can affect energy harvest, and disrupt microbiome signaling to the

host and glycemic control. Together these influences can disrupt the homeostatic balance between glucose-evoked gut hormone release, glucose absorption, and

microbiome composition, leading to dysglycemia which would potentially be harmful in the setting of type 2 diabetes. In addition, complex carbohydrates

(oligosaccharides) may contribute to these processes via a yet to be identified polycose taste receptor.
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to germ-free recipient mice resulted in glucose intolerance after
6 days. Changes in abundance of more than 40 operational
taxonomic units were demonstrated in the recipient mice,
along with an upregulation of microbial carbohydrate-related
metabolic pathways, and an increase in fecal SCFA levels (101).
This increase in SCFAs was speculated to represent increased
microbial energy harvest, but may equally represent the outcome
of differences in intestinal transit time or absorption (116,
117). It is also been unclear whether fecal bacterial samples
accurately represent the microbiome of the proximal gut (118).
Indeed, Daly et al. showed that supplementation with SUCRAM
(neohesperidin dihydrochalcone and saccharin) over 2 weeks
in weaned piglets increased the abundance of Lactobacillaceae
in cecal, but not fecal, samples, while cecal SCFA levels were
comparable in the LCS and control diet groups (117). These
findings underscore the importance of testing regional (or
mucosa-associated) bacteria in the gut, and of establishing causal
mechanisms as opposed to microbial followers of changes in host
metabolism.

Causal mechanisms linking dysbiosis to impaired GLP-
1 signaling in the gut-brain axis were recently investigated
in mouse models of diet-induced type 2 diabetes. Grasset
et al., identified a subset of ileal bacteria in these mice
that disrupted GLP-1-dependent nitric oxide production in
ileal enteric neurons via an attenuation of GLP-1 receptor
expression, and showed that this drove GLP-1 resistance in
the regulation of gastric emptying and insulin release (119).
A GLP-1 resistant phenotype in germ-free mice was rescued
through conventionalization with ileal bacteria from control-
fed mice, but not from mice fed the diabetogenic diet, while
antibiotic treatment led to GLP-1 resistance in control-fed mice,
but improved GLP-1 resistance in diabetogenic diet-fed mice.
This study demonstrated that diabetogenic diet-induced gut
dysbiosis was causally related to dysglycemia via disruption of
GLP-1 signaling in the gut-brain axis, but did not extend to
an assessment of specific bacterial populations or products that
mediated this effect.

Accordingly, clinical studies are now required to determine
whether LCS induce intestinal dysbiosis in humans, whether
this is causally related to disruption of the gut-brain axis that
controls glycemia, and which microbiome-derived signals effect
this change. Such investigation holds the potential to usher
in new classes of anti-diabetic therapy which would correct
defects in microbiome composition and/or associated signaling
pathways that impact glycemic control adversely.

TASTING SWEET VIA NON-STR PATHWAYS

Several studies have reported the existence of a lingual and STR-
independent sensor tuned to detect the nutritive value of complex
carbohydrates. Behavioral studies in rodents have shown that
rats prefer consumption of polycose (glucose oligomer) solutions
above that of water or solutions of the disaccharides sucrose and
maltose, particularly at low concentrations (120, 121). This was
further supported by electrophysiology studies of lingual nerve

activity, which indicated that rats could distinguish the tastes of
polycose and sucrose (122, 123). Importantly, mice lacking one
or both STR subunits had limited, or no behavioral or lingual
nerve responses to simple sugars, while responses to polycose
remained normal (124–127). More recently, behavioral research
on human taste detection have added support for a human
polycose taste receptor, showing that humans can detect glucose
oligomer solutions on an equimolar basis to simple sugars,
even when lingual STR were blocked with lactisole and amylase
activity inhibited by an α-glucosidase inhibitor (to prevent oral
breakdown of glucose oligomers to STR-detectable mono- and
disaccharides) (128–130). The latter study also indicated that
oligosaccharides of 4 or higher degrees of polymerization (i.e.,
maltotetraose) were detected by a STR-independent lingual taste
pathway in humans. While a polycose receptor is yet to be
cloned, future characterization may also reveal its potential as
an intestinal nutrient sensor, and whether there are associated
consequences for glycemic control in humans.

CONCLUSION

Although foods and beverages sweetened with LCS have become
a popular alternative to their sugar-sweetened counterparts,
research relating to their impact on acute and chronic human
health has been inappropriately limited, and the outcomes
equivocal. However, the outcomes of the hitherto small number
of well-conducted studies raises concerns regarding their health
impact. Further research is now required to better characterize
the EEC biology of intestinal sweet taste signaling in humans,
characterize the mechanisms utilized by LCS to impact glycemic
control, and identify potential targets capable of modifying STR
signaling for clinical benefits (Figure 3). In addition, studies
are needed to determine whether patterns of LCS consumption
can trigger gut dysbiosis, with consequences for human health
as are subsequent metagenomic, metabolomic, and functional
investigations of causal mechanisms. These hold the high
potential for improved prevention and novelmanagement of type
2 diabetes.
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