38 research outputs found

    Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    Get PDF
    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02

    FORUM:Remote testing for psychological and physiological acoustics

    Get PDF
    Acoustics research involving human participants typically takes place in specialized laboratory settings. Listening studies, for example, may present controlled sounds using calibrated transducers in sound-attenuating or anechoic chambers. In contrast, remote testing takes place outside of the laboratory in everyday settings (e.g., participants' homes). Remote testing could provide greater access to participants, larger sample sizes, and opportunities to characterize performance in typical listening environments at the cost of reduced control of environmental conditions, less precise calibration, and inconsistency in attentional state and/or response behaviors from relatively smaller sample sizes and unintuitive experimental tasks. The Acoustical Society of America Technical Committee on Psychological and Physiological Acoustics launched the Task Force on Remote Testing (https://tcppasa.org/remotetesting/) in May 2020 with goals of surveying approaches and platforms available to support remote testing and identifying challenges and considerations for prospective investigators. The results of this task force survey were made available online in the form of a set of Wiki pages and summarized in this report. This report outlines the state-of-the-art of remote testing in auditory-related research as of August 2021, which is based on the Wiki and a literature search of papers published in this area since 2020, and provides three case studies to demonstrate feasibility during practice

    Population Structure as Revealed by mtDNA and Microsatellites in Northern Fur Seals, Callorhinus ursinus, throughout Their Range

    Get PDF
    Background: The northern fur seal (Callorhinus ursinus; NFS) is a widely distributed pinniped that has been shown to exhibit a high degree of philopatry to islands, breeding areas on an island, and even to specific segments of breeding areas. This level of philopatry could conceivably lead to highly genetically divergent populations. However, northern fur seals have the potential for dispersal across large distances and have experienced repeated rapid population expansions following glacial retreat and the more recent cessation of intensive harvest pressure. Methodology/Principal Findings: Using microsatellite and mitochondrial loci, we examined population structure in NFS throughout their range. We found only weak population genetic structure among breeding islands including significant FST and W ST values between eastern and western Pacific islands. Conclusions: We conclude that insufficient time since rapid population expansion events (both post glacial and following the cessation of intense harvest pressure) mixed with low levels of contemporary migration have resulted in an absence of genetic structure across the entire northern fur seal range

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut

    Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    No full text
    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level ( T 60  = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources

    Perceptual learning of pitch provided by cochlear implant stimulation rate.

    No full text
    Cochlear implant users hear pitch evoked by stimulation rate, but discrimination diminishes for rates above 300 Hz. This upper limit on rate pitch is surprising given the remarkable and specialized ability of the auditory nerve to respond synchronously to stimulation rates at least as high as 3 kHz and arguably as high as 10 kHz. Sensitivity to stimulation rate as a pitch cue varies widely across cochlear implant users and can be improved with training. The present study examines individual differences and perceptual learning of stimulation rate as a cue for pitch ranking. Adult cochlear implant users participated in electrode psychophysics that involved testing once per week for three weeks. Stimulation pulse rate discrimination was measured in bipolar and monopolar configurations for apical and basal electrodes. Base stimulation rates between 100 and 800 Hz were examined. Individual differences were quantified using psychophysically derived metrics of spatial tuning and temporal integration. This study examined distribution of measures across subjects, predictive power of psychophysically derived metrics of spatial tuning and temporal integration, and the effect of training on rate discrimination thresholds. Psychophysical metrics of spatial tuning and temporal integration were not predictive of stimulation rate discrimination, but discrimination thresholds improved at lower frequencies with training. Since most clinical devices do not use variable stimulation rates, it is unknown to what extent recipients may learn to use stimulation rate cues if provided in a clear and consistent manner
    corecore