5,472 research outputs found

    A Microscopic Derivation of the SO(5)-Symmetric Landau-Ginzburg Potential

    Full text link
    We construct a microscopic model of electron interactions which gives rise to both superconductivity and antiferromagnetism, and which admits an approximate SO(5) symmetry that relates these two phases. The symmetry can be exact, or it may exist only in the long-wavelength limit, depending on the detailed form of the interactions. We compute the macroscopic Landau-Ginzburg free energy for this model as a function of temperature and doping, by explicitly integrating out the fermions. We find that the resulting phase diagram can resemble that observed for the cuprates, with the antiferromagnetism realized as a spin density wave, whose wavelength might be incommensurate with the lattice spacing away from half filling.Comment: 29 pp., plain TeX, 7 figures, uses macros.tex (included) and epsf.tex; added subject clas

    Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun

    Get PDF
    Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars ~ 10 times more massive than the Sun (~10 M_sun), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10 M_sun exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass (> 8 M_sun) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude from the data that the gas is falling inwards towards a very young star of ~20 M_sun, in line with theoretical predictions of non-spherical accretion.Comment: 11 pages, 2 figure

    Rotating Skyrmion Stars

    Get PDF
    In a previous paper, using an equation of state of dense matter representing a fluid of Skyrmions we constructed the corresponding non-rotating compact-star models in hydrostatic equilibrium; these are mostly fluid stars (the Skyrmion fluid) thus naming them {\it Skyrmion Stars}. Here we generalize our previous calculations by constructing equilibrium sequences of rotating Skyrmion stars in general relativity using the computer code {\it RNS} developed by Stergioulas. We calculated their masses and radii to be 0.4 \le M/M_{\odot} \le 3.45, and 13.0 {\rm km}\le R\le 23.0 {\rm km}, respectively (R being the circumferential radius of the star). The period of the maximally rotating Skyrmion stars is calculated to be 0.8 {\rm ms}\le P \le 2.0 {\rm ms}. We find that a gap (the height between the star surface and the inner stable circular orbit) starts to appear for M\sim 2.0M_{\odot}. Specifically, the Skyrmion star mass range with an existing gap is calculated to be 1.8 < M/ M_{\odot} < 3.0 with the corresponding orbital frequency 0.8 {\rm kHz} < \nu_{\rm ISCO} < 1.3 {\rm kHz}. We apply our model to the 4U 1820-30 low mass X-ray binary and suggest a plausible Skyrmion star candidate in the 4U 1636-53 system. We discuss the difficulties encountered by our model in the 4U 0614+09 case with the highest known Quasi-Periodic Oscillation frequency of 1329 Hz. A comparative study of Skyrmion stars and models of neutron stars based on recent/modern equations of state is also presented.Comment: 8 pages, 6 figures, 4 tables, revised version (accepted for publication in A&A

    A mobile element-based evolutionary history of guenons (tribe Cercopithecini)

    Get PDF
    BACKGROUND: Guenons (tribe Cercopithecini) are a species-rich group of primates that have attracted considerable attention from both primatologists and evolutionary biologists. The complex speciation pattern has made the elucidation of their relationships a challenging task, and many questions remain unanswered. SINEs are a class of non-autonomous mobile elements and are essentially homoplasy-free characters with known ancestral states, making them useful genetic markers for phylogenetic studies. RESULTS: We identified 151 novel Alu insertion loci from 11 species of tribe Cercopithecini, and used these insertions and 17 previously reported loci to infer a phylogenetic tree of the tribe Cercopithecini. Our results robustly supported the following relationships: (i) Allenopithecus is the basal lineage within the tribe; (ii) Cercopithecus lhoesti (L'Hoest's monkey) forms a clade with Chlorocebus aethiops (African green monkey) and Erythrocebus patas (patas monkey), supporting a single arboreal to terrestrial transition within the tribe; (iii) all of the Cercopithecus except C. lhoesti form a monophyletic group; and (iv) contrary to the common belief that Miopithecus is one of the most basal lineages in the tribe, M. talapoin (talapoin) forms a clade with arboreal members of Cercopithecus, and the terrestrial group (C. lhoesti, Chlorocebus aethiops and E. patas) diverged from this clade after the divergence of Allenopithecus. Some incongruent loci were found among the relationships within the arboreal Cercopithecus group. Several factors, including incomplete lineage sorting, concurrent polymorphism and hybridization between species may have contributed to the incongruence. CONCLUSION: This study presents one of the most robust phylogenetic hypotheses for the tribe Cercopithecini and demonstrates the advantages of SINE insertions for phylogenetic studies

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence

    Get PDF
    Linear two-coordinate copper complexes of cyclic (alkyl)(amino)-carbenes (CAAC)CuX (X = halide) show photoluminescence with solid-state quantum yields of up to 96%; in contrast to previously reported Cu photoemitters the emission is independent of temperature over the range T = 4 – 300 K and occurs very efficiently by prompt rather than delayed fluorescence, with lifetimes in the sub-nanosecond range

    Tidal effects on brown dwarfs: Application to the eclipsing binary 2MASSJ05352184-0546085 - The anomalous temperature reversal in the context of tidal heating

    Full text link
    2MASSJ05352184-0546085 (2M0535-05) is the only known eclipsing brown dwarf (BD) binary, and so may serve as an important benchmark for models of BD formation and evolution. However, theoretical predictions of the system's properties seem inconsistent with observations: i. The more massive (primary) component is observed to be cooler than the less massive (secondary) one. ii. The secondary is more luminous (by roughly 10^{24} W) than expected. We study the impact of tidal heating to the energy budget of both components. We also compare various plausible tidal models to determine a range of predicted properties. We apply two versions of two different, well-known models for tidal interaction, respectively, (i.) the 'constant-phase-lag' model and (ii.) the 'constant-time-lag' model, and incorporate the predicted tidal heating into a model of BD structure. We find that the contribution of heat from tides in 2M0535-05 alone may only be large enough to account for the discrepancies between observation and theory in an unlikely region of the parameter space. The tidal quality factor of BDs, Q_{BD}, would have to be 10^{3.5} and the secondary needs a spin-orbit misalignment greater than 50 degrees. However, tidal synchronization time scales for 2M0535-05 restrict the tidal dissipation function Q_{BD} to values greater than 10^{4.5} and rule out intense tidal heating in 2M0535-05. We provide the first constraint on Q_{BD}. Tidal heating alone is unlikely to be responsible for the surprising temperature reversal within 2M0535-05. But an evolutionary embedment of tidal effects and a coupled treatment with the structural evolution of the BDs is necessary to corroborate or refute this result.Comment: accepted by AandA January 2010, 18 pages, 13 figures, 1 tabl
    corecore