7 research outputs found

    ASIRI : an ocean–atmosphere initiative for Bay of Bengal

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2

    Persistent Dissociation and Its Neural Correlates in Predicting Outcomes After Trauma Exposure

    No full text
    OBJECTIVE: Dissociation, a disruption or discontinuity in psychological functioning, is often linked with worse psychiatric symptoms; however, the prognostic value of dissociation after trauma is inconsistent. Determining whether trauma-related dissociation is uniquely predictive of later outcomes would enable early identification of at-risk trauma populations. The authors conducted the largest prospective longitudinal biomarker study of persistent dissociation to date to determine its predictive capacity for adverse psychiatric outcomes following acute trauma. METHODS: All data were part of the Freeze 2 data release from the Advancing Understanding of Recovery After Trauma (AURORA) study. Study participants provided self-report data about persistent derealization (N=1,464), a severe type of dissociation, and completed a functional MRI emotion reactivity task and resting-state scan 2 weeks posttrauma (N=145). Three-month follow-up reports were collected of posttraumatic stress, depression, pain, anxiety symptoms, and functional impairment. RESULTS: Derealization was associated with increased ventromedial prefrontal cortex (vmPFC) activation in the emotion reactivity task and decreased resting-state vmPFC connectivity with the cerebellum and orbitofrontal cortex. In separate analyses, brain-based and self-report measures of persistent derealization at 2 weeks predicted worse 3-month posttraumatic stress symptoms, distinct from the effects of childhood maltreatment history and current posttraumatic stress symptoms. CONCLUSIONS: The findings suggest that persistent derealization is both an early psychological and biological marker of worse later psychiatric outcomes. The neural correlates of trauma-related dissociation may serve as potential targets for treatment engagement to prevent posttraumatic stress disorder. These results underscore dissociation assessment as crucial following trauma exposure to identify at-risk individuals, and they highlight an unmet clinical need for tailored early interventions
    corecore