46 research outputs found

    Health-related quality of life and the burden of prolonged seizures in noninstitutionalized children with epilepsy

    Get PDF
    OBJECTIVE: This study aimed to provide information on the burden of illness and health-related quality of life (HRQoL) in children with epilepsy who experience prolonged acute convulsive seizures (PACS) in the community setting, and to investigate factors that may predict poor HRQoL in this population. METHODS: Noninstitutionalized children (aged 3–16 years) who had experienced at least one PACS within the past year and had currently prescribed PACS rescue medication were enrolled in a cross-sectional study in Germany, Italy, Spain, and the United Kingdom (Practices in Emergency and Rescue medication For Epilepsy managed with Community-administered Therapy 3 [PERFECT-3]). Clinicians, parents/guardians, and patients completed web-based questionnaires regarding clinical characteristics, PACS frequency, and day-to-day impairment. Patients' HRQoL was rated by clinicians, parents/guardians, and patients themselves using the 5-dimension EuroQol questionnaire (EQ-5D) and summarized as a utility score. Potential predictors of poor HRQoL were tested in individual univariate generalized linear models and a global multivariable model. RESULTS: Enrolled children (N = 286) had experienced 1–400 PACS (median: 4) in the past year. Clinicians reported that 216/281 patients (76.9%) had learning disabilities of varying severity. Mean EQ-5D utility scores rated by clinicians (n = 279), parents (n = 277), and patients (n = 85) were 0.52 (standard deviation: 0.41), 0.51 (0.39), and 0.74 (0.29), respectively. Increasing PACS frequency, increasing severity of learning disability, and specialist school attendance were significantly associated with decreasing EQ-5D utility score. In the multivariable model, having learning disabilities was the best predictor of poor HRQoL. SIGNIFICANCE: Health-related quality of life was very poor in many children with epilepsy whose PACS were managed with rescue medication in the community, with learning disability being the most powerful predictor of patients' HRQoL. Mean EQ-5D utility scores were lower (worse) than published values for many other chronic disorders, indicating that optimal treatment should involve helping children and their families to manage learning disabilities and day-to-day impairments, in addition to preventing seizures

    Effect of rescue medication on seizure duration in non-institutionalized children with epilepsy

    Get PDF
    OBJECTIVES: Characterize the real-world management of and outcomes for children with epilepsy receiving rescue medication for prolonged acute convulsive seizures (PACS) in the community. METHODS: PERFECT-3 (Practices in Emergency and Rescue medication For Epilepsy managed with Community-administered Therapy 3) was a European, retrospective observational study. Eligible patients were non-institutionalized children with epilepsy aged 3–16 years who had experienced ≥1 PACS in the past year and had ≥1 currently prescribed PACS rescue medication. Investigators provided clinical assessments and parents/guardians completed questionnaires. Statistical tests were post hoc; p values are descriptive. RESULTS: At enrollment (N = 286), most patients had prescriptions for diazepam (69.2%) and/or midazolam (55.9%); some had two (26.6%) or three (2.4%) prescribed rescue medications. Most patients experienced PACS despite regular anti-epilepsy medication. According to parents, the average duration of their child’s seizures without rescue medication was <5 minutes in 35.7% of patients, 5–<20 minutes in 42.6%, and ≥20 minutes in 21.7% (n = 258); with rescue medication seizure duration was <5 minutes in 69.4% of patients, 5–<20 minutes in 25.6%, and ≥20 minutes in 5.0%. Rescue medication use was significantly associated with average seizures lasting <5 minutes (χ2 = 58.8; p < 0.0001). At the time of their most recent PACS, 58.5–67.8% of children reportedly received rescue medication within 5 minutes of seizure onset, and 85.4–94.1% within 10 minutes. CONCLUSION: This study provides the first real-world data that rescue medications administered in the community reduce the duration of PACS in children with epilepsy. Study limitations including potential recall bias are acknowledged

    Death within 8 years after childhood convulsive status epilepticus:a population-based study

    Get PDF
    The risk of long-term mortality and its predictors following convulsive status epilepticus in childhood are uncertain. We report mortality within 8 years after an episode of convulsive status epilepticus, and investigate its predictors from a paediatric, prospective, population-based study from north London, UK. In the current study, we followed-up a cohort previously ascertained during a surveillance study of convulsive status epilepticus in childhood. After determining the survival status of the cohort members, we defined cause of death as that listed on their death certificates. We estimated a standardized mortality ratio to compare mortality in our cohort with that expected in the reference population. Multivariable Cox regression analysis was used to investigate any association between the clinical and demographic factors at the time of status epilepticus and subsequent risk of death. The overall case fatality was 11% (95% confidence interval 7.5–16.2%); seven children died within 30 days of their episode of convulsive status epilepticus and 16 during follow-up. The overall mortality in our cohort was 46 times greater than expected in the reference population, and was predominantly due to higher mortality in children who had pre-existing clinically significant neurological impairments when they had their acute episode of convulsive status epilepticus. Children without prior neurological impairment who survived their acute episode of convulsive status epilepticus were not at a significantly increased risk of death during follow-up. There were no deaths in children following prolonged febrile convulsions and idiopathic convulsive status epilepticus. A quarter of deaths during follow-up were associated with intractable seizures/convulsive status epilepticus, and the rest died as a complication of their underlying medical condition. On regression analysis, presence of clinically significant neurological impairments prior to convulsive status epilepticus was the only independent risk factor for mortality. In conclusion, there is a high risk of death within 8 years following childhood convulsive status epilepticus but most deaths are not seizure related. Presence of pre-existing clinically significant neurological impairments at the time of convulsive status epilepticus is the main risk factor for mortality within 8 years after the acute episode. The attributable role of convulsive status epilepticus on mortality remains uncertain, but appears less than is generally perceived

    Febrile seizures: mechanisms and relationship to epilepsy.

    Get PDF
    Studies of febrile seizures have been driven by two major enigmas: first, how these most common of human seizures are generated by fever has not been known. Second, epidemiological studies have linked prolonged febrile seizures with the development of temporal lobe epilepsy, yet whether long or recurrent febrile seizures cause temporal lobe epilepsy has remained unresolved. To investigate these questions, a model of prolonged (complex) febrile seizures was developed in immature rats and mice, permitting mechanistic examination of the potential causal relationships of fever and seizures, and of febrile seizures and limbic epilepsy. Although the model relied on hyperthermia, it was discovered that the hyperthermia-induced secretion of endogenous fever mediators including interleukin-1beta, which contributed to the generation of these 'febrile' seizures. In addition, prolonged experimental febrile seizures provoked epilepsy in a third of the animals. Investigations of the mechanisms of this epileptogenesis demonstrated that expression of specific ion (HCN) channels and of endocannabinoid signaling, may be involved. These may provide novel drug targets for intervention in the epileptogenic process

    Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment

    Get PDF
    VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function

    Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment

    Get PDF
    VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Valproic acid

    No full text
    corecore