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Mutations in the Neuronal Vesicular SNARE VAMP2
Affect Synaptic Membrane Fusion and Impair Human
Neurodevelopment

Vincenzo Salpietro,1,2,3,24 Nancy T. Malintan,4,24 Isabel Llano-Rivas,5 Christine G. Spaeth,6

Stephanie Efthymiou,3,4 Pasquale Striano,1,2 Jana Vandrovcova,3 Maria C. Cutrupi,7 Roberto Chimenz,7

Emanuele David,8 Gabriella Di Rosa,9 Anna Marce-Grau,10 Miquel Raspall-Chaure,10

Elena Martin-Hernandez,11 Federico Zara,12 Carlo Minetti,1,2 Deciphering Developmental Disorders
Study, SYNAPS Study Group, Oscar D. Bello,4 Rita De Zorzi,13 Sara Fortuna,14 Andrew Dauber,15

Mariam Alkhawaja,16 Tipu Sultan,17 Kshitij Mankad,18 Antonio Vitobello,19,20 Quentin Thomas,20

Frederic Tran Mau-Them,19,20 Laurence Faivre,20,21 Francisco Martinez-Azorin,22 Carlos E. Prada,6

Alfons Macaya,10 Dimitri M. Kullmann,4 James E. Rothman,4,23 Shyam S. Krishnakumar,4,23,*
and Henry Houlden3,*

VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synap-

tosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential

for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in

VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been pre-

sent since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-syn-

onymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo

non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features,

including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Recon-

stituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mecha-

nisms. The genetic synaptopathy caused by VAMP2 de novomutations highlights the key roles of this gene in human brain development

and function.
Chemical synaptic transmission relies on precisely coordi-

nated, activity-dependent neurotransmitter release.1 A

fundamental step in this pathway is the fusion of synaptic

vesicles with the presynaptic plasma membrane. Soluble

N-ethylmaleimide-sensitive factor attachment protein

receptor (SNARE) proteins mediate membrane fusion and

are essential for the fusion of synaptic vesicles.1,2 At

mammalian central nervous system (CNS) synapses,

neuronal SNAREs consist of vesicle-associated membrane

protein 2 (VAMP2, also called synaptobrevin-2) on the
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vesicle membrane (v-SNARE) and the binary complex of

syntaxin1A (STX1A) and synaptosomal-associated protein

25 Kd (SNAP25) on the plasma membrane (target or

t-SNARE).3 The v- and t-SNARE proteins assemble in a

polarized manner starting from the N termini distal from

the membranes and proceeding towards the C termini

and are held together by discrete interacting residues

(numbered -7 to þ8), including 15 hydrophobic contacts

and central ionic residues.4 This ‘‘zippering’’ process pulls

the membranes together and provides the energy to fuse
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the lipid bilayers.5,6 The SNAREs alone are sufficient to

drive fusion of synaptic vesicles, but this process is tightly

regulated by a number of synaptic proteins to enable Ca2þ

-regulated neurotransmitter release.7 The key regulatory el-

ements at excitatory CNS synapses include chaperones

(Munc18 and Munc13), the primary Ca2þ sensor synapto-

tagmin-1, and the auxiliary protein complexin.7–10

VAMP2 (MIM: 185881) encodes a neuronal v-SNARE

essential for the fusion of synaptic vesicles at mammalian

central nerve terminals.5–7 Introduction of specific engi-

neered mutations affecting its SNARE motif has been re-

ported to alter vesicle fusion in vitro by impairing either for-

mation of the SNARE complex or the interaction of VAMP2

with other (auxiliary) presynaptic proteins.11,12 Vamp2�/�

mice present severely decreased rates of both spontaneous

and Ca2þ-triggered synaptic-vesicle fusion, and these

mice die immediately after birth.13 Also, synapses from

VAMP2-deficient mice display changes in synaptic-vesicle

morphology and size—and delayed stimulus-dependent

endocytosis.14 Thus, VAMP2 exerts a complex influence

on synaptic transmission; it plays fundamental roles in

vesicle fusion, neurotransmitter release, and vesicle endo-

cytosis. Despite the critical role of VAMP2 in presynaptic

molecular events, little is known of the consequences of

disrupted VAMP2 function in human neurodevelopment.

Here, we describe five unrelated individuals who had

shown hypotonia since birth and who had intellectual

disability (ID) with autistic features, including variable mo-

tor stereotypies resembling Rett syndrome (RTT), and,

in some children, also central visual impairment, hyperki-

netic movements, and epilepsy and/or electroencephalog-

raphy (EEG) abnormalities. Table 1 summarizes the

detailed phenotypes of the individuals (1–5), aged between

3 and 14 years.

In all affected children, familyhistories, pregnancies, and

birth histories were unremarkable, and neurodevelopmen-

tal impairment occurred within the first year of life. The

earliest sign of neurological involvement was axial hypoto-

nia at birth. Poor visual fixation (with only brief and occa-

sional visual contact, lasting up to a few seconds) had

been evident since the first months of life in three affected

individuals (1–3); these individuals were later diagnosed

withcentral visual impairment (Table1). Three children (in-

dividuals 1–3) exhibited a hyperkineticmovement disorder

starting in the first year of life (Videos S1, S2, S3, and S4).

Abnormal movements ranged from dystonic posturing

(mainly involving the trunk, neck, and lower limbs) and

moderate chorea (individuals 1 and 3) to a mixed-move-

ment disorder with severe chorea and dystonic posturing

(individual 2) ormyoclonic jerks (individual 3). All children

showed autistic features, typically including flapping or

flailing of the arms, as well as hand wringing or clapping.

Additional repetitive behavior patterns included body

rocking and head banging. Self-injurious behaviors were

evident in individual 2. A virtual absence of purposeful

hand movements was present in all cases (Table 1, Videos

S1, S2, S3, S4, and S5). Motor development in individuals
722 The American Journal of Human Genetics 104, 721–730, April 4,
1–3 was severely impaired, and these children had not at-

tained the ability to walk. Severe language impairment

was present in the threemore severely affected children (in-

dividuals 1–3), none of whom had attained meaningful

speech production, but individuals 4 and 5 were capable

of saying 5–10 words (Table 1).

Seizures or abnormal EEG occurred in four affected indi-

viduals. Individual 1 did not present with epileptic sei-

zures, but ictal EEG recording at the age of 15 months

showed high-voltage delta activity with interspersed

sharp-and-slow-wave complexes over the right central

and posterior brain regions. Individual 2 suffered from

multiple focal seizures per day; these started shortly after

birth and were characterized on EEG by fast rhythmic

activity followed by sharp-and-slow-wave complexes

(Figure S1). At 12 months, individual 3 presented with in-

fantile spasms that were associated with diffuse EEG parox-

ysms. Individual 4 developed infrequent staring episodes

with eyelid myoclonia at 5 years of age and had a single

episode of non-convulsive status epilepticus at the age of

11 years. Several anti-epileptic drugs, including valproic

acid, vigabatrin, and lamotrigine, have been trialed in indi-

viduals 2–4 (see Supplemental Data); beneficial effects of

valproic acid treatment were noted in individual 4, who

has been seizure-free since the age of 12 years and has

had normal follow-up EEGs. Individual 2 underwent a

craniotomy for grid placement at the age of 6 months

and had a right posterior circulation stroke affecting the

thalamic and cortical areas; at the age of 18 months, he

had a right temporal lobectomy. Brain magnetic resonance

imaging (MRI) was unrevealing in all children except in in-

dividual 1, for whom mild myelination delay and a poste-

riorly slender corpus callosum was observed at the age of 2

years (Figure 1).

The clinical features summarized above are consistent

with a diagnosis of neurodevelopmental impairment

with variable neurological features in all five affected indi-

viduals. Extensive initial genetic and biochemical diag-

nostic investigations for a range of genetic conditions,

including non-syndromic ID, epileptic encephalopathies

(EEs), EEs with dyskinesia, metabolic disorders, and mito-

chondrial diseases, were unrevealing (see Supplemental

Data). Affected children were recruited for genetic analysis

through the use of whole-exome sequencing (WES) at five

centers. Written informed consent was obtained for all in-

dividuals and their relatives, after which DNA was ex-

tracted from peripheral lymphocytes according to standard

protocols. The study was approved by the local ethics com-

mittee at University College London Hospitals (project 06/

N076) and at the participating institutions. Variants of in-

terest in VAMP2 were identified by WES of trios and

confirmed by Sanger sequencing in all cases. Libraries

were prepared from parents’ and affected individuals’

DNA, and exomes were captured and sequenced on Illu-

mina sequencers. Raw data were processed and filtered

with established pipelines and then annotated, and the

Exome variant server ESP6500 was used for assessments
2019



Table 1. Clinical Features of Individuals with De Novo VAMP2 Mutations

Individual
Number
Gender Age Variant

Growth/
OFC

Hypotonia/
DD ID

Epileptic
Seizures EEG ASD RTT-Like Features

Movement
Disorder

Central
Visual
Defects

Speech
Impairment

Brain
Imaging

Additional
Features

1
F
3 yr

c.223T>C,
p.Ser75Pro

normal yes severe no high-voltage delta
activity, sharp
wave-slow wave
complexes

yes stereotyped hand
movements, absent
purposeful hand
movements

choreic movement,
flapping, dystonic
postures

yes absent speech thin corpus
callosum,
delayed
myelination

inability
to walk

2
M
10 yr

c.233A>C,
p.Glu78Ala

normal yes severe focal
seizures,
GTCS

fast rhythmic
activity, sharp
wave-slow wave
complexes

yes body rocking, head
banging, screaming,
absent purposeful
hand movements

generalized
chorea

yes absent speech unremarkable abnormal
behavior,
self-injury,
inability to
walk

3
M
13yr

c.230T>C,
p.Phe77Ser

normal yes severe infantile
spasms,
convulsive
status
epilepticus

disorganized EEG
paroxysms

yes stereotyped hand
movements, absent
purposeful hand
movements

choreic movement,
myoclonic jerks

yes absent speech unremarkable abnormal
behavior,
inability to
walk,
severe
constipation

4
M
14yr

c.128_130delTGG,
p.Val43del

normal yes moderate focal
seizures

generalized and
multifocal
abnormalities

yes stereotyped hand
movements (wringing),
absent purposeful
hand movements

no no only 5–10
spoken words

unremarkable clumsiness,
abnormal
behavior

5
F
3 yr

c.135_137delCAT,
p.Ile45del

normal yes moderate no disorganized EEG
paroxysms

yes stereotyped hand
movements (washing)

no no only 5 spoken
words

unremarkable abnormal
behavior

Abbreviations are as follows: ASD¼ autism spectrum disorder; DD¼ developmental delay; EEG¼ electroencephalography; FC¼ focal seizures; GTCS¼ generalized tonic-clonic seizures; ID¼ intellectual disability; and OFC¼
occipital-frontal circumference. Variants are named according to the GenBank: NM_014232 reference transcript.
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Figure 1. Brain MRI Scan of Individual 1,
Who Harbors a De Novo VAMP2 p.Ser75-
Pro Variant, at the Age of 2 Years
The panel shows axial T2-weighted,
sagittal T1-weighted, and coronal T1-
weighted MR images. There is some gener-
alized delay in the maturation of myelin
and a reduced volume of the cerebral white
matter posteriorly. (Yellow arrows show a
posteriorly slender corpus callosum.) The
optic nerves and chiasm are hypoplastic
(red arrows).
of variant frequency in the control population (see Supple-

mental Data). Only exonic and donor and acceptor

splicing variants were considered. Priority was given to

rare variants (that had a genomic evolutionary rate

profiling [GERP] score >2 and were present at <1% in pub-

lic databases, including those of the 1000 Genomes Proj-

ect, NHLBI Exome Variant Server, Complete Genomics

69, and Exome Aggregation Consortium [ExAC v0.2]).

Synonymous variants were not considered. Following their

respective analysis pipelines,15–18 participating centers

generated a list of candidate variants filtered against vari-

ants from public databases according to modes of inheri-

tance, then compared their results through international

research networks and variant databases.19,20

Three de novo non-synonymous variants in VAMP2 [NM_

014232: c.223T>C (p.Ser75Pro), c.230T>C (p.Phe77Ser),

c.233A>C (p.Glu78Ala)] were identified in three affected in-

dividuals (1–3) recruited and studied at different centers as

part of different research initiatives (see Supplemental

Data). We then analyzed the genetic data from the SYNaPS

Study Group collection of exomes and genomes from over

4,000 individuals affected with early-onset neurological

disorders (including �250 children with undiagnosed

neurodevelopmental impairment and epilepsy) for variants

in VAMP2 and identified a child (individual 4), carrying

a de novo single amino acid deletion at position 43

[NM_014232: c.128_130delTGG (p.Val43del)] (Figures 2A

and 2B). We next used web-based tools19,20 to screen

VAMP2 variantswithin exome and genomedatasets fromes-

tablished international collaborations; thisprocess identified

an additional child (individual 5) carrying a de novo single-

amino-acid deletion at position 45 [GenBank: NM_014232,

c.135_137delCAT (p.Ile45del)] (see Supplemental Data).

All the identified variants were absent from the Genome

Aggregation Database and ExAC, and all displayed high

conservation (mean: GERPþþ 5.26) and in silico pathogenic

predictor (mean: CADD_Phred 26.9) scores (see Supple-

mental Data). In the ExAC database (last accessed January

30, 2018), which contains exomes from 60,706 unrelated

individuals, there are no listed loss-of-function variants

in VAMP2, and only two non-synonymous variants

(p.Asn49Lys [p.Val50Met]) are present within the SNARE

motif (amino acids 31–91).

The de novo non-synonymous variants identified in this

study cluster in close proximity within the C-terminal
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portion of the SNARE motif (Figure 2C). Interspecies align-

ment of protein sequences generated with Clustal Omega

show that all mutations occur within the SNARE motif at

residues highly conserved through evolution (Figure 2D).

Figure 3 shows positions of the mutated amino acids

within a 3D structure of the VAMP2 ectodomain in com-

plex with STX1A and SNAP25. Replacement analysis

shows that the p.Ser75Pro variant will result in the loss

of two hydrogen bonds, one interchain between Ser75 of

VAMP2 and Tyr243 of STX1A and one intrachain between

Ser75 and Gln71, although the p.Phe77Ser variant intro-

duces a hydrophilic residue in an otherwise hydrophobic

region and the p.Glu78Ala variant disrupts the hydrogen

bond between Glu78 of VAMP2 and Arg246 of STX1A.

To determine whether these disease-associated variants

affect VAMP2 structure and SNARE complex stability, we

performed 100 ns molecular dynamics (MD) simulations

by using a humanized version of the neuronal SNARE com-

plex (PDB 3HD7, see Supplemental Data). During the sim-

ulations, theWTand p.Ser75Pro seemed to reach a station-

ary state, but major rearrangements were still observed for

p.Phe77Ser and p.Glu78Ala at the end of the simulation.

This was evident in their backbone root-mean-square devi-

ation (RMSD) and radius of gyration, which measure the

divergence of the mutant protein structure from its initial

structure over the course of the simulation. In all cases, the

most mobile portion of the chain was that close to the C

terminus, as seen in their root mean squared fluctuation

(RMSF). The RMSF further indicates that in all cases, the

variants increase the mobility of the backbone, and this ef-

fect is particularly evident for p.Glu78Ala. Overall rear-

rangements of the complex are shown in Figures S2–S3.

To examine VAMP2 expression across CNS regions, we

used microarray data (Affymetrix Exon 1.0 ST) from hu-

man post-mortem brain tissues as previously described.21

This analysis showed the highest VAMP2 expression in

the putamen and the frontal lobes (Figure S4).

To evaluate the functional consequence of VAMP2 vari-

ants, we employed the reconstituted, lipid-mixing assay

based on NBD (N-[7-nitro-2-1, 3-benzoxadiazol-4-yl])-to-

RHO (lissamine rhodamine B) energy transfer (see Supple-

mental Data). In this assay, the VAMP2 (wild-type [WT] or

mutant) was included in the fluorescent donor liposomes,

whereas the t-SNAREs were reconstituted into the non-

fluorescent acceptor liposomes. We read out membrane
2019



Figure 2. VAMP2 Intragenic De Novo Variants Identified in This Study
(A) Individuals carrying de novo VAMP2 intragenic variants; note the hand stereotypies.
(B) Sanger sequences of five kindreds with de novo VAMP2 intragenic variants. Chromatograms of individuals 1–5 and their parents
confirm the de-novo occurrence of the VAMP2 variants in all cases. M/þ denotes the indicated VAMP2 variant in the heterozygous state,
and þ/þ denotes homozygous wild-type sequence. Mutant bases in the probands are indicated by a red arrow.
(C) Schematic depiction of the humanVAMP2 protein (GenBank: NP_055047.2) indicating the positions of the variants identified in this
study.
(D) Multiple alignment showing complete conservation across species and VAMP1 homolog (GenBank: NP_055046.1) of the residues
affected by the variants identified in this study (these variants are highlighted in yellow). Human VAMP2 (GenBank: NP_055047.2),
chimpanzee VAMP2 (UniProt: JAA33755.1), marmoset VAMP2 (UniProt: JAB33896.1), rat VAMP2 (NP_036795.1), rabbit VAMP2
(XP_008268978.1), cow VAMP2 (GenBank: NP_776908.1), dog VAMP2 (GenBank: XP_005620068.1), zebrafish VAMP2 (GenBank:
NP_956299.1).
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Figure 3. Molecular Modeling of the
Identified De Novo VAMP2 Non-Synony-
mous Variants
Comparison between the p.Ser75Pro (A),
p.Phe77Ser (B), and p.Glu78Ala (C) mutant
conformation within the SNARE complex
(left panel, red square). The wild-type
conformation is shown in the middle
panel, and the mutated residues are shown
in the right panel. Variant p.Ser75Pro
causes the loss of two hydrogen bonds,
one interchain between Ser75 of VAMP2
and Tyr243 of STX1A and one intra-
chain between Ser75 and Gln71; variant
p.Phe77Ser introduces a hydrophilic resi-
due in an otherwise hydrophobic region;
and variant p.Glu78Ala causes the loss
of a hydrogen bond between Glu78 of
VAMP2 and Arg246 of STX1A. Modeling
of the VAMP2 ectodomain (green for WT,
light green for mutants) in complex with
STX1A (orange for WT, light orange for
mutants) and Snap25 (blue and cyan for
WT, marine and aquamarine for mutants);
configurations are as seen 100 ns into the
molecular dynamic simulation. The com-
plexes were modeled from the humanized
3HD7 complex. Water molecules and ions
are not shown.
fusion between the donor and acceptor liposome mixing

by quantifying increased fluorescence resulting from the

dequenching of NBD fluorescence (Figure 4A). To this

end, we purified WT VAMP2 and the variant protein along

with the t-SNARE complex by using a bacterial expression

system as previously described.22,23 We were able to purify

the p.Ser75Pro and p.Glu78Ala variants, and Coomassie-

stained SDS-PAGE analysis showed that these variants

were structurally intact and highly pure with no contami-

nation (Figure S5). However, all attempts to isolate the

p.Phe77Ser were unsuccessful. We therefore limited our

in vitro fusion analysis to the two remaining non-synony-

mous variants (p.Ser75Pro and p.Glu78Ala).

As shown in Figures 4C–4F, the VAMP2 disease-associ-

ated variant p.Ser75Pro reduced the rate and extent of

fusion compared to that seen with VAMP2 WT, whereas

the p.Glu78Ala variant had little to no effect (Figures 4C

and 4D). The reduction in the fusion associated with

p.Ser75Pro was estimated to be approximately 25% that

in the WT, suggesting that the introduction of a proline

residue at this site most likely interferes with the proper as-

sembly of the SNARE proteins and thus affects VAMP2

fusion properties, whereas the fusion profile associated

with the p.Glu78Ala was indistinguishable from that of

the WT.

Earlier studies have shown that Munc18 chaperones

SNARE assembly via interactions with the VAMP2 C-termi-

nal region.12,24 We therefore investigated the effect of the

disease variants under Munc18-activated conditions. As
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expected, inclusion of Munc18-1 produced an approxi-

mately 2-fold increase in the rate and extent of fusion

when WT VAMP2 was used (Figure 4E). Strikingly,

Munc18 could not activate the fusion mediated by the

VAMP2 p.Ser75Pro variant (Figure 4E). Consequently, we

observed a significant (>90%) loss-of-function phenotype

with the p.Ser75Pro variant under these conditions. In

contrast, Munc18 was able to activate the fusion mediated

by VAMP2 p.Glu78Ala, confirming that this variant does

not affect the SNARE assembly process or its activation.

To accurately emulate the physiological make-up of the in-

dividuals carrying heterozygous de novo VAMP2 variants,

we also tested the effect of replacing half the copies of

WT VAMP2 with the disease variants (Figure S4). Remark-

ably, in the case of p.Ser75Pro, the fusion profile for the

mixed v-liposomes (50:50 WT:mutant) was identical to

the fusion profile for the homogenous samples containing

only the mutant proteins (Figure 4F; Figure S4). This im-

plies that p.Ser75Pro mutant dominantly interferes with

WT (Figure 4F), and this could readily explain the patho-

logical phenotype observed with this variant.

Our genetic and functional studies show that de novo

mutations in VAMP2 cause neurodevelopmental impair-

ment associated with variable clinical features. Individuals

1–3, carrying de novo non-synonymous variants affecting

the C terminus of the VAMP2 SNARE motif (residues 75,

77, and 78), presented a severe neurological phenotype

with motor impairment (and inability to walk), central

visual deficits, hyperkinetic movements, and, in two of
2019
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Figure 4. Disease-Associated VAMP2
Variants Result in Reduced Fusion Rates
(A) Scheme showing the liposome fusion
assay.
(B) The SDS-PAGE and Coomassie-stained
gel image of VAMP2 WT, VAMP2
disease-associated variants (p.Ser75Pro
[p.Glu78Ala]), and t-SNARE (syntaxin 1
and SNAP25) reconstitution into donor v-
and acceptor t-liposomes, respectively.
(C) Line graphs showing the average basal
(without Munc18-1) increase that occurs
in NBD fluorescence as a result of fusion
between the v-liposome and t-SNARE lipo-
somes carrying WT or VAMP2 disease vari-
ants (p.Ser75Pro [p.Glu78Ala]). Liposome
fusion reaction in the presence of CDV
was used as negative control.
(D) Basal fusion quantification, normal-
ized to WT, at the endpoint (60 min) as
described in (C).
(E) Line graphs of liposome fusion reaction
as in (C), in thepresenceof5mMMunc18-1.
(F) Endpoint fusion quantification, normal-
ized to WT, (60 min) of experiment as
described in (E). Bar graphs also showed
endpoint quantification of a similar experi-
ment that used a v-liposome that contained
a mixture of WT and mutant VAMP2 pro-
teins. Data were from at least four indepen-
dent replicates and presented asmeans plus
SD. *p< 0.05; ** p< 0.01; *** p< 0.001;n.s.,
not significant (p > 0.05).
them, epilepsy starting in infancy. Individuals 4 and 5, car-

rying de novo single-amino-acid deletions involving resi-

dues at positions 43 and 45, presented a less severe neuro-

logical involvement, acquired the ability to walk, and were

able to pronounce a few words. MD simulations showed

that missense mutations in the C terminus induce higher

flexibility of this region within the assembled SNARE com-

plexes. The in vitro lipid-mixing assay revealed a significant

defect in vesicle fusion as a consequence of the p.Ser75Pro

variant, but p.Glu78Ala had no clear functional conse-

quence. The pathophysiological phenotype for the

p.Glu78Ala variant might be due to impaired interactions

with regulatory proteins that were not included in the

in vitro assay. Notably, the assembly of the C-terminal re-

gion of the SNARE proteins is considered critical to driving

membrane fusion,5,25 and several synaptic regulatory pro-

teins modulate vesicle fusion by binding the C-terminal

portion of the SNARE complex.12,23,24 Thus, mutations

affecting this region could disturb the SNARE complex as-

sembly by less-efficient partnering of cognate SNARE

proteins and/or disrupt its association with regulatory ele-

ments such as Munc18-1 or Synaptotagmin. In the physi-

ological context, this would manifest as the perturbation

of Ca2þ-triggered neurotransmitter release. Even a slight
The American Journal of Human
alteration of the fusion kinetics

in vitro would translate to a dramatic

effect on the release of neurotransmit-

ters release at the neuronal synapses.
This might explain the severe neurodevelopmental impair-

ment observed in the VAMP2 synaptopathy. Interestingly,

variants affecting the Ser75 residue have previously been

shown to impair the Munc18-1 stimulatory activity by

impairing its ability to regulate trans-SNARE zipper-

ing,12,23 and variants involving residue Glu78 can also

affect Ca2þ-regulated neurotransmitter release.26

The present work adds to the evidence that neurodeve-

lopmental disorders (NDDs) have a strong genetic compo-

nent and encompass a range of frequently co-existing

conditions, including ID, developmental delay (DD), and

autism spectrum disorders (ASDs).27,28 Neurodevelopmen-

tal impairment, epilepsy, and movement disorders also

frequently co-exist.29,30 Rare variants in genes that encode

a number of presynaptic proteins involved in Ca2þ-regu-
lated neurotransmitter release have been identified in indi-

viduals affected by a spectrum of neurological disorders.

These include the following:

1. variants in SNAP25 (MIM: 60322) isoforms SNAP25a

and SNAP25b; these variants have been identified in as-

sociation with ID, seizures, and myasthenia31,32

2. variants in SYT1 (MIM: 185605), which encodes

the Ca2þ-sensor synaptotagmin-1 required for evoked
Genetics 104, 721–730, April 4, 2019 727



synchronous fusion; these variants are found in individ-

uals with NDDs and hyperkinetic movements33,34

3. variants in genes encoding the RIM interactor PNKD

or the SNAP25 and synaptotagmin-1 interactor PRRT2;

these variants have been identified in different forms

of dyskinesias and seizures (MIM: 128200; MIM:

60575)35,36

4. variants in UNC13A (MIM: 609894), encoding the

synaptic regulator Munc13-1; these variants have been

linked to an NDD with involuntary movements37

5. variants in STXBP1 (MIM: 602926), encoding

Munc18-1; these variants cause NDDs with epilepsy

and autistic features38

The phenotypes associated with the VAMP2 synaptop-

athy reported here are reminiscent of the variability re-

ported in some individuals who have de-novo variants in

STXBP1 or in SYT1 and who can present with a combina-

tion of neurodevelopmental impairment, stereotypies, hy-

perkinetic movements (including chorea and dystonia),

and EEG anomalies or epileptic syndromes of variable

severity.33,39

Notably, a heterozygousmutation in a synaptobrevin ho-

molog,VAMP1, which encodes a protein involved in vesicle

fusionmainly atneuromuscular synapses,40has been linked

to spastic ataxia in families from Newfoundland.41 More

recently, biallelic mutations in VAMP1 have been identified

in association with a phenotype of congenital hypotonia

and muscle weakness, and in three of these families neuro-

physiological evidence of presynaptic neuromuscular trans-

mission impairment was detected and led to a diagnosis of

presynaptic congenital myasthenic syndrome.42–44

In conclusion, we have identified a neurodevelopmental

disease that is variably associated with additional neurolog-

ical features, including epilepsy and hyperkinetic move-

ments, and that is caused by de novo mutations in VAMP2.

These results further delineate an emerging spectrum of hu-

man core synaptopathies caused by variants in genes that

encode SNAREs and essential regulatory components of

the synaptic machinery. The hallmark of these disorders is

impairedpresynaptic neurotransmission atnerve terminals;

this impaired neurotransmission results in a wide array of

(often overlapping) clinical features, including neurodeve-

lopmental impairment, weakness, seizures, and abnormal

movements. The genetic synaptopathy caused by VAMP2

mutations highlights the key roles of this gene in human

brain development and function. Variability in the effects

of differentVAMP2mutants under in vitro conditions points

toward mutation-specific mechanisms underlying the pre-

synaptic defect of the affected children, and this variability

highlights a promising area of future research.
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