24 research outputs found
Single-Particle Properties from Kohn-Sham Green's Functions
An effective action approach to Kohn-Sham density functional theory is used
to illustrate how the exact Green's function can be calculated in terms of the
Kohn-Sham Green's function. An example based on Skyrme energy functionals shows
that single-particle Kohn-Sham spectra can be improved by adding sources used
to construct the energy functional.Comment: 9 pages, 3 figure
Gene Master Regulators of Papillary and Anaplastic Thyroid Cancers
We hypothesize that distinct cell phenotypes are governed by different sets of gene master regulators (GMRs) whose strongly protected (by the homeostatic mechanisms) abundance modulates most cell processes by coordinating the expression of numerous genes from the corresponding functional pathways. Gene Commanding Height (GCH), a composite measure of gene expression control and coordination, is introduced to establish the gene hierarchy in each phenotype. If the hypothesis is true, than one can selectively destroy cancer nodules from a heterogeneous tissue by altering the expression of genes whose GCHs are high in cancer but low in normal cell phenotype. Here, we test the hypothesis and show its utility for the thyroid cancer (TC) gene therapy. First, we prove that malignant and cancer free surrounding areas of a surgically removed papillary TC (PTC) tumor are governed by different GMRs. Second, we show that stable transfection of a gene induces larger transcriptomic alterations in the cells where it has higher GCH than in other cells. For this, we profiled the transcriptomes of the papillary BCPAP and anaplastic 8505C TC cell lines before and after stable transfection with NEMP1, DDX19B, PANK2 or UBALD1. The four genes were selected to have similar expression levels but significantly different GCH scores in the two cell lines before transfection. Indeed, each of the four genes triggered larger alterations in the cells where they had larger GCH. Our results prove the feasibility of a personalized gene therapy approach that selectively targets the cancer cells from a tissue
Density Functional Theory for a Confined Fermi System with Short-Range Interaction
Effective field theory (EFT) methods are applied to density functional theory
(DFT) as part of a program to systematically go beyond mean-field approaches to
medium and heavy nuclei. A system of fermions with short-range, natural
interactions and an external confining potential (e.g., fermionic atoms in an
optical trap) serves as a laboratory for studying DFT/EFT. An effective action
formalism leads to a Kohn-Sham DFT by applying an inversion method
order-by-order in the EFT expansion parameter. Representative results showing
the convergence of Kohn-Sham calculations at zero temperature in the local
density approximation (LDA) are compared to Thomas-Fermi calculations and to
power-counting estimates.Comment: 36 pages, 20 figures, RevTeX
Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films
In this paper, we present a method for reducing the three dimensional
Schrodinger equation to study confined metallic states, such as quantum well
states, in a multilayer film geometry. While discussing some approximations
that are employed when dealing with the three dimensionality of the problem, we
derive a one dimensional equation suitable for studying such states using an
envelope function approach. Some applications to the Cu/Co multilayer system
with regard to spin tunneling/rotations and angle resolved photoemission are
discussed.Comment: 14 pages, 1 figur
Systematic first-principles study of impurity hybridization in NiAl
We have performed a systematic first-principles computational study of the
effects of impurity atoms (boron, carbon, nitrogen, oxygen, silicon, phosporus,
and sulfur) on the orbital hybridization and bonding properties in the
intermetallic alloy NiAl using a full-potential linear muffin-tin orbital
method. The matrix elements in momentum space were used to calculate real-space
properties: onsite parameters, partial densities of states, and local charges.
In impurity atoms that are empirically known to be embrittler (N and O) we
found that the 2s orbital is bound to the impurity and therefore does not
participate in the covalent bonding. In contrast, the corresponding 2s orbital
is found to be delocalized in the cohesion enhancers (B and C). Each of these
impurity atoms is found to acquire a net negative local charge in NiAl
irrespective of whether they sit in the Ni or Al site. The embrittler therefore
reduces the total number of electrons available for covalent bonding by
removing some of the electrons from the neighboring Ni or Al atoms and
localizing them at the impurity site. We show that these correlations also hold
for silicon, phosporus, and sulfur.Comment: Revtex, 8 pages, 7 eps figures, to appear in Phys. Rev.
Toward ab initio density functional theory for nuclei
We survey approaches to nonrelativistic density functional theory (DFT) for
nuclei using progress toward ab initio DFT for Coulomb systems as a guide. Ab
initio DFT starts with a microscopic Hamiltonian and is naturally formulated
using orbital-based functionals, which generalize the conventional
local-density-plus-gradients form. The orbitals satisfy single-particle
equations with multiplicative (local) potentials. The DFT functionals can be
developed starting from internucleon forces using wave-function based methods
or by Legendre transform via effective actions. We describe known and
unresolved issues for applying these formulations to the nuclear many-body
problem and discuss how ab initio approaches can help improve empirical energy
density functionals.Comment: 69 pages, 16 figures, many revisions based on feedback. To appear in
Progress in Particle and Nuclear Physic
Eft for DFT
These lectures give an overview of the ongoing application of effective field
theory (EFT) and renormalization group (RG) concepts and methods to density
functional theory (DFT), with special emphasis on the nuclear many-body
problem.Comment: 57 pages, to appear in the proceedings of the ECT* school on
"Renormalization Group and Effective Field Theory Approaches to Many-Body
Systems", Springer Lecture Notes in Physics; acknowledgment adde
Reincarnation and Community amongst the Druze of Mount Lebanon
Senior Project submitted to The Division of Social Studies of Bard College
Interactive Virtual Expert System for Advising (InVEStA)
... Virtual Expert System for Advising—to assist undergraduate students and their advisors in providing timely, accurate and conflict-free schedules. The proposed system is based on Java and object-relational database technologies and consists of the Database Layer, Transaction Layer, Scheduler and the web-based Front-End. The Transaction layer transmits requests and data back and forth to the other system components and provides multi-user capabilities. The Scheduler provides non-conflicting class schedules based on pre-specified requirements. The front-end provides the client’s interface. In this paper we discuss the structure and functionality of the system with particular emphasis on database design and specifics of the scheduling algorithm. Also, we discuss issues related to advising double and multiple majors and to auditing students that change or add majors during the course of their studies. Finally, we discuss some practical issues related to the implementation of the system and its launching in a middle-sized university