4,055 research outputs found
A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles
Cassini radio science experiments have provided multiple occultation optical
depth profiles of Saturn's rings that can be used in combination to analyze
density waves. This paper establishes an accurate procedure of inversion of the
wave profiles to reconstruct the wave kinematic parameters as a function of
semi-major axis, in the nonlinear regime. This procedure is achieved from
simulated data in the presence of realistic noise perturbations, to control the
reconstruction error. By way of illustration we have applied our procedure to
the Mimas 5:3 density wave. We were able to recover precisely the kinematic
parameters from the radio experiment occultation data in most of the
propagation region; a preliminary analysis of the pressure-corrected dispersion
allowed us to determine new but still uncertain values for the opacity
( cm/g) and velocity dispersion of ( cm/s) in
the wave region. Our procedure constitutes the first step in our planned
analysis of the density waves of Saturn's rings. It is very accurate and
efficient in the far-wave region. However, improvements are required within the
first wavelength. The ways in which this method can be used to establish
diagnostics of ring physics are outlined.Comment: 50 pages,13 figures, 2 tables. Published in Icarus
Triple-Star Candidates Among the Kepler Binaries
We present the results of a search through the photometric database of
eclipsing Kepler binaries (Prsa et al. 2011; Slawson et al. 2011) looking for
evidence of hierarchical triple star systems. The presence of a third star
orbiting the binary can be inferred from eclipse timing variations. We apply a
simple algorithm in an automated determination of the eclipse times for all
2157 binaries. The "calculated" eclipse times, based on a constant period
model, are subtracted from those observed. The resulting O-C (observed minus
calculated times) curves are then visually inspected for periodicities in order
to find triple-star candidates. After eliminating false positives due to the
beat frequency between the ~1/2-hour Kepler cadence and the binary period, 39
candidate triple systems were identified. The periodic O-C curves for these
candidates were then fit for contributions from both the classical Roemer delay
and so-called "physical" delay, in an attempt to extract a number of the system
parameters of the triple. We discuss the limitations of the information that
can be inferred from these O-C curves without further supplemental input, e.g.,
ground-based spectroscopy. Based on the limited range of orbital periods for
the triple star systems to which this search is sensitive, we can extrapolate
to estimate that at least 20% of all close binaries have tertiary companions.Comment: 19 pages, 13 figures, 3 tables; ApJ, 2013, 768, 33; corrected Fig. 7,
updated references, minor fixes to tex
Masses, Beaming and Eddington Ratios in Ultraluminous X-ray Sources
I suggest that the beaming factor in bright ULXs varies as , where is the Eddington ratio for accretion. This is required
by the observed universal relation between
soft--excess luminosity and temperature, and is reasonable on general physical
grounds. The beam scaling means that all observable properties of bright ULXs
depend essentially only on the Eddington ratio , and that these systems
vary mainly because the beaming is sensitive to the Eddington ratio. This
suggests that bright ULXs are stellar--mass systems accreting at Eddington
ratios of order 10 -- 30, with beaming factors b \ga 0.1. Lower--luminosity
ULXs follow bolometric (not soft--excess) correlations and
probably represent {\it sub}--Eddington accretion on to black holes with masses
\sim 10\msun. High--mass X-ray binaries containing black holes or neutron
stars and undergoing rapid thermal-- or nuclear--timescale mass transfer are
excellent candidates for explaining both types. If the
scaling for bright ULXs can be extrapolated to the Eddington ratios found in
SS433, some objects currently identified as AGN at modest redshifts might
actually be ULXs (`pseudoblazars'). This may explain cases where the active
source does not coincide with the centre of the host galaxy.Comment: MNRAS Letters, in pres
Black Widow Pulsars: the Price of Promiscuity
The incidence of evaporating 'black widow' pulsars (BWPs) among all
millisecond pulsars (MSPs) is far higher in globular clusters than in the
field. This implies a special formation mechanism for them in clusters. Cluster
MSPs in wide binaries with WD companions exchange them for turnoff-mass stars.
These new companions eventually overflow their Roche lobes because of
encounters and tides. The millisecond pulsars eject the overflowing gas from
the binary, giving mass loss on the binary evolution timescale. The systems are
only observable as BWPs at epochs where this evolution is slow, making the mass
loss transparent and the lifetime long. This explains why observed BWPs have
low-mass companions. We suggest that at least some field BWPs were ejected from
globular clusters or entered the field population when the cluster itself was
disrupted.Comment: 6 pages, 2 figures, MNRAS in pres
Evidence for the disintegration of KIC 12557548 b
Context. The Kepler object KIC 12557548 b is peculiar. It exhibits
transit-like features every 15.7 hours that vary in depth between 0.2% and
1.2%. Rappaport et al. (2012) explain the observations in terms of a
disintegrating, rocky planet that has a trailing cloud of dust created and
constantly replenished by thermal surface erosion. The variability of the
transit depth is then a consequence of changes in the cloud optical depth.
Aims. We aim to validate the disintegrating-planet scenario by modeling the
detailed shape of the observed light curve, and thereby constrain the cloud
particle properties to better understand the nature of this intriguing object.
Methods. We analysed the six publicly-available quarters of raw Kepler data,
phase-folded the light curve and fitted it to a model for the trailing dust
cloud. Constraints on the particle properties were investigated with a
light-scattering code. Results. The light curve exhibits clear signatures of
light scattering and absorption by dust, including a brightening in flux just
before ingress correlated with the transit depth and explained by forward
scattering, and an asymmetry in the transit light curve shape, which is easily
reproduced by an exponentially decaying distribution of optically thin dust,
with a typical grain size of 0.1 micron. Conclusions. Our quantitative analysis
supports the hypothesis that the transit signal of KIC 12557548 b is due to a
variable cloud of dust, most likely originating from a disintegrating object.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and
Astrophysic
M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems
We have searched the Kepler light curves of ~3900 M-star targets for evidence
of periodicities that indicate, by means of the effects of starspots, rapid
stellar rotation. Several analysis techniques, including Fourier transforms,
inspection of folded light curves, 'sonograms', and phase tracking of
individual modulation cycles, were applied in order to distinguish the
periodicities due to rapid rotation from those due to stellar pulsations,
eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets
with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30
of the 178 systems exhibit two or more independent short periods within the
same Kepler photometric aperture, while several have three or more short
periods. Adaptive optics imaging and modeling of the Kepler pixel response
function for a subset of our sample support the conclusion that the targets
with multiple periods are highly likely to be relatively young physical binary,
triple, and even quadruple M star systems. We explore in detail the one object
with four incommensurate periods all less than 1.2 days, and show that two of
the periods arise from one of a close pair of stars, while the other two arise
from the second star, which itself is probably a visual binary. If most of
these M-star systems with multiple periods turn out to be bound M stars, this
could prove a valuable way of discovering young hierarchical M-star systems;
the same approach may also be applicable to G and K stars. The ~5% occurrence
rate of rapid rotation among the ~3900 M star targets is consistent with spin
evolution models that include an initial contraction phase followed by magnetic
braking, wherein a typical M star can spend several hundred Myr before spinning
down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The
Astrophysical Journa
KOI 1224, a Fourth Bloated Hot White Dwarf Companion Found With Kepler
We present an analysis and interpretation of the Kepler binary system KOI
1224. This is the fourth binary found with Kepler that consists of a thermally
bloated, hot white dwarf in a close orbit with a more or less normal star of
spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff =
14400 +/- 1100 K, mass = 0.20 +/- 0.02 Msun, and radius = 0.103 +/- 0.004 Rsun,
and an F-star companion of mass = 1.59 +/- 0.07 Msun that is somewhat beyond
its terminal-age main sequence. The orbital period is quite short at 2.69802
days. The ingredients that are used in the analysis are the Kepler binary light
curve, including the detection of the Doppler boosting effect; the NUV and FUV
fluxes from the Galex images of this object; an estimate of the spectral type
of the F-star companion; and evolutionary models of the companion designed to
match its effective temperature and mean density. The light curve is modelled
with a new code named Icarus which we describe in detail. Its features include
the full treatment of orbital phase-resolved spectroscopy, Doppler boosting,
irradiation effects and transits/eclipses, which are particularly suited to
irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its
likely evolutionary history. We infer that this type of system, containing a
bloated hot white dwarf, is the direct descendant of an Algol-type binary. In
spite of this basic understanding of the origin of KOI 1224, we discuss a
number of problems associated with producing this type of system with this
short of an short orbital period.Comment: 14 pages, 8 figures, 2 tables, submitted to Ap
Exploring autoionization and photo-induced proton-coupled electron transfer pathways of phenol in aqueous solution
The excited state dynamics of phenol
in water have been investigated
using transient absorption spectroscopy. Solvated electrons and vibrationally
cold phenoxyl radicals are observed upon 200 and 267 nm excitation,
but with formation time scales that differ by more than 4 orders of
magnitude. The impact of these findings is assessed in terms of the
relative importance of autoionization versus proton-coupled electron
transfer mechanisms in this computationally tractable model system
- …
