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ABSTRACT The excited state dynamics of phenol in water have been investigated using 

transient absorption spectroscopy. Solvated electrons and vibrationally cold phenoxyl radicals 

are observed upon 200 nm and 267 nm excitation, but with formation timescales that differ by 

more than four orders of magnitude. The impact of these findings is assessed in terms of the 

relative importance of autoionization versus proton-coupled electron transfer mechanisms in this 

computationally tractable model system. 
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Phenol is the chromophore of the amino-acid tyrosine, a key residue in ground and excited 

state biochemical redox reactions, such as the reaction center of Photosystem II (PSII), 1,2 and 

enzymatic catalysis.3 The photophysical properties of the phenol chromophore in aqueous 

solution have been extensively studied on both the ground 4 and excited potential energy surfaces 

(PESs). 5-8 Previous flash photolysis and transient absorption studies of phenol and tyrosine in 

aqueous solution 5,6,8-10 reveal the formation of phenoxyl (or tyrosyl) radicals and solvated 

electrons, 11 but the precise details of the mechanism(s) leading to these photoproducts have 

remained elusive. The debate as to whether the process involves excited state proton transfer 

(ESPT),7 autoionization, O–H bond fission (H-atom transfer), or excited-state proton-coupled 

electron transfer (PCET) pathways remains a matter of some controversy. A PCET pathway is 

understood to involve the concerted transfer of a proton and electron, 12,13 rather than a stepwise 

transfer, and is recognized as an important mechanism in the functioning of many biological 

systems. 14,15 To date, electronic structure calculations have only examined small phenol–water 

clusters, revealing that direct photoexcitation to the 1πσ* state leads to a net transfer of an H 

atom to the water cluster. 16,17 

Here we report the use of ultrafast transient absorption (TA) spectroscopy methods to 

investigate the excited-state dynamics of phenol-h6 (in H2O) and its phenol-d1 isotopologue (in 

D2O) using a femtosecond UV pump excitation, and a broadband white light super-continuum 

probe that spans the electronic absorption of the phenoxyl radical and solvated electron species. 

The experimental apparatus has been described previously, 18 and is summarized in the 

supporting information (SI).  

Fig. 1(a) displays TA spectra for phenol-h6 in H2O at the displayed time delays, t, following 

200 nm (6.2 eV) excitation. Two notable features are evident after t = 200 fs, the time-resolution 
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Figure 1. (a) TA spectra of 18 mM phenol-h6/H2O solution for displayed pump-probe time 

delays and 200 nm excitation (b) Early time (t ≤ 1 ps) TA spectra displayed on an expanded 

scale. 

of our transient absorption experiments at this excitation wavelength: 

vibrationally cold phenoxyl radicals with an electronic origin at ~400 nm, 9,19-22 and a broad 

absorption attributed to solvated electrons (that peaks at ~700 nm 23-25). The profile of the broad 

solvated electron transient evolves and its band centre shifts to shorter wavelength during the 

first 2 ps, as the electrons become fully hydrated. The assignment of the solvated electron 

transient was confirmed by the addition of HCl, a known electron scavenger (see SI). 26 

Expanded views of early time (t ≤ 1 ps) TA spectra in the 350–500 nm probe region are shown in 

Fig. 1(b).  These data reveal an additional feature centered at 425 nm (indicated by the arrow), 

which we assign based on prior literature, 21,27-29 to the ground state phenol radical cation 

(PhOH•+), and which disappears on a sub-picosecond timescale. To the best of our knowledge, 

this represents the first observation of the PhOH•+ species in aqueous solution near neutral pH. 

The vertical ionization potential (VIP) of phenol (PhOH) in water is 7.9 eV relative to the 

vacuum level.30 Excitation at 200 nm (6.2 eV) is unable to induce vertical ionization of phenol. 

The thermodynamic threshold for producing fully solvated charged products, i.e., the phenoxyl 

radical (PhO•), a proton and a solvated electron, is estimated to be in the range 4.3 – 4.5 eV (see 

SI for the free energy landscape of PhOH and associated photoproducts). The observation of the 
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PhOH•+ reaction intermediate (Fig. 1(b)) thus points in favor of an autoionization mechanism, 

followed by rapid deprotonation. The quantum yield of solvated electron formation was 

extracted via calibration using the known solvated electron yield for photodetaching an electron 

from hydroxide at 200 nm, 31,32 yielding values of 26% (at t = 1 ps) and declining to ~14% at t = 

800 ps. We attribute this decline to geminate recombination between PhO• and solvated 

electrons, and may involve the third geminate partner, the proton, as discussed in greater detail 

later. Using known molar extinction coefficients, 22,24 the ratio of phenoxyl and solvated electron 

products was found to be very close to 1, suggesting few, if any, phenol molecules undergo 

homolytic O–H bond photodissociation at 200 nm. 

These TA results are strikingly different to those reported previously for phenol-h6 in the non-

polar solvent, cyclohexane,33 wherein 200 nm excitation was seen to yield prompt vibrationally 

hot phenoxyl radicals (within 200 fs), with no evidence for solvated electrons. Such a finding is 

consistent with direct photodissociation on a repulsive 1πσ* PES, as found in gas phase 

experiments. 34-39 The solvent dependent photochemistry of phenol, is likely dictated by the 

magnitude of the hydration contribution to the thermodynamics of the charged reaction species. 

Water is energetically able to support charged products such as protons and solvated electrons, 

whereas non-polar solvents like cyclohexane are unable to do so, therefore phenoxyl radical 

generation in non-polar solvents largely mirrors the gas phase reaction.33 

Our recent transient absorption studies of para-methylthiophenol (p-MePhSH) in solution 

33,40,41 illustrate that the electrostatic properties of the solvent are certainly not the sole factor 

dictating the photoinduced dynamics in solution. These studies showed no evidence for 

autoionization or PCET pathways when exciting at 267 nm or at 200 nm, even in polar ethanol 

solution which can support and stabilize both the electron and dipolar p-MePhS radical; ‘gas-
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phase’-like (i.e. S–H bond fission) dynamics 42 were seen to prevail. Two conclusions follow: 

First, the fact that p-MePhSH in ethanol has a lower VIP (7.2 eV)41 than PhOH in water (7.9 

eV)30 shows that a lower VIP does not necessarily predicate a larger autoionization yield.  

Second, we conclude that the O–H bond fission process as seen for PhOH in aqueous solution 

must be far slower, and thus a less competitive non-radiative decay pathway, than the rate of 

autoionization when excited at 200 nm.43 

We now focus on the dynamics of phenol-h6 following excitation at 267 nm, which populates 

the lower S1 (1ππ*) state. Spectra recorded at t < 1 ns are dominated by ESA from the S1 state 

and a growing feature peaking at ~600 nm that has been observed previously and assigned to 

ESA of phenol excimers.33 No spectral signatures attributable to phenoxyl radicals or solvated 

electrons are discernible in TA spectra recorded at t < 1 ns (see SI). The early time kinetics of the 

TA signal at ~600 nm (at the peak of the transient) are unaffected by addition of electron 

scavengers (see SI), implying that the quantum yield of electron ejection is negligible at t < 1 ns.  

At t > 2 ns, the absorption maximum shifts to longer wavelength, as the phenol excimer signal 

decays and the broader feature that we assign to the solvated electron rises (See Fig. 2(a)).  
  

 

 

Figure 2. Comparison of (a) 90 mM phenol-h6/H2O and (b) phenol-d1/D2O TA data following 

267 nm excitation, measured at selected time delays. Insets display the same time delays but 

focus on the 375-650 nm probe region. 
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The TA spectrum recorded at t = 14 ns clearly shows the signature of the phenoxyl radical, and 

electron scavenging experiments (Fig. 3(a)) confirm the presence of solvated electrons, and the 

small remaining transient at ~600 nm is due to residual phenol excimers. The phenoxyl radical 

yield was found to be 13% at t = 13 ns via calibration using the known PhO• (plus solvated 

electron) photodetachment yield from phenolate.22 From literature molar extinction 

coefficients,22,24 we then established that for 267 nm excitation of phenol in aqueous solution, 

solvated electrons and phenoxyl radicals were produced in a 1:1 ratio. The yield of phenoxyl 

radicals increases from the earliest delay time to ~14 ns. We, however, cannot ascertain the time 

in which the yield maximizes due to the limited number of discrete pump-probe time delays 

measured. 

 

Figure 3. (a) TA spectra of phenol with and without 50 mM HCl (the electron scavenger) 

measured at t = 13 ns. (b) TA spectra of phenol-h6/H2O and phenol-d1/D2O measured at t = 13 ns. 

TA spectra recorded at selected pump-probe time delays following 267 nm excitation of 

phenol-d1 in D2O are shown in Fig. 2(b). These were acquired sequentially to the phenol-h6 in 

H2O data in order to minimize changes in experimental conditions. These data display the same 

spectral features and kinetics as for the case of phenol-h6 in H2O. Comparing the TA spectra 

from phenol-h6/H2O and phenol-d1/D2O measured at t = 13 ns (overlaid in Fig. 3(b)) also shows 

negligible difference in the relative yields of phenoxyl radicals and solvated electrons in the two 
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cases, implying a negligible kinetic isotope effect (i.e. KIE = 1.0 ± 0.4). Note, that within the 

upper and lower bounds of the error (0.6–1.4), the returned KIE is very small, and does not 

change our discussion. 

We can envision several possible mechanisms for forming phenoxyl radicals and solvated 

electrons on a nanosecond timescale following excitation at 267 nm; photodissociation of the O–

H bond, as per the gas phase, excited state proton transfer followed by electron detachment, 

PCET or autoionization. In turn, we consider the merits of each potential mechanism. 

Previous experiments in non-polar solvents 33 and in the gas phase 33,39,44,45 have shown that 

PhOH molecules excited to the S1 (1ππ*) state can tunnel beneath a conical intersection (CI) 

associated with the S2/S1 (1πσ*/1ππ*) diabatic states on a nanosecond timescale, resulting in 

homolytic O–H bond fission, vibrationally excited PhO• radicals and translationally excited H 

atoms.  For this to be a viable route to forming the solvated electrons observed in the present 

study, which are appear on a very similar nanosecond timescale, would require rapid H atom 

fission into H+
(aq) and e–

(aq) after the bond scission.  This seems very improbable, given that the 

equilibrium constant for this process favors neutral H atoms rather than ionic products (by 6 

orders of magnitude); 26,46 recall that reaction with H+ is the basis for the e– scavenging process 

observed in Fig. 3(a). The corresponding gas phase studies involving phenol-d6 show O–D bond 

fission does not occur,35 because the tunneling probability for a D atom under the S2/S1 CI is 

greatly reduced. 17,39 Therefore, such an explanation is also unable to account for the measured 

KIE (1.0 ± 0.4). The absence of any homolytic O–H bond fission contribution likely reflects a 

third effect of the polar water on the reaction: the barrier to dissociation under the S2/S1 CI must 

be larger (or significantly altered) in aqueous solution cf. in cyclohexane 33 or in the gas phase 

39,47 – as predicted by previous calculations for phenol–H2O clusters.16 
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Many prior studies have explored ESPT in phenol.7,48-51 The pKa in the S1 state is only 4 (cf. 

9.8 in the S0 state), 52 and potentially enables proton transfer from the UV-excited phenol to 

proximal water molecules and formation of an excited-state phenolate anion that can eject an 

electron to solvent.  If the second step is rate limiting, we would expect to observe the ESA band 

of the phenolate(S1) anion at ~500 nm with a lifetime of 22 ps concomitant with electron 

appearance on a similar timescale. 22 Neither is consistent with the spectroscopy or kinetics 

evident in the present TA study. Alternatively, an ESPT process wherein the initial deprotonation 

step was rate limiting should be expected to have a large associated KIE. For example, naphthol 

derivatives have ESPT KIEs ranging between 1.7 and 3.8. 53 Such behavior is not observed in our 

experiments either.  Further support for excluding ESPT as the source of the observed charged 

photoproducts is provided by previous flash photolysis experiments which concluded that <3% 

of excited phenol molecules underwent ESPT within the S1 lifetime,47 and several other reported 

failures to observe any signatures of ESPT for phenol in aqueous solution. 48,49 

We now turn to consider possible PCET based explanations.  PCET on the ground state 

potential (i.e. following internal conversion from S1) is considered unlikely given the observed 

lack of any kinetic isotope effect (KIE = 1.0 ± 0.4), cf. the KIE = 2.5 ± 0.7 value derived from 

electrochemical studies of PCET involving phenol(S0) molecules by Costentin et al.. 4   

Several previous studies have demonstrated PCET on an excited state PES (albeit typically 

occurring on picosecond timescales 54-56). Photoinduced PCET thus merits discussion in the 

context of phenol. The electron and proton could be transferred into bulk solution on similar 

timescales in a concerted fashion, but the electron would also have to escape the first solvation 

shell in order to avoid fast inner-cage recombination with the phenoxyl radical and be 

sufficiently separated to account for the deduced ~13% phenoxyl radical yield at t = 13 ns. 
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Combined Monte Carlo and quantum chemical calculations show a PhOH—OH2 hydrogen bond 

length of ~1.8 Å in the PhOH(S1) state.57 The electrons and protons would need to be ejected 

distances corresponding to several solvent shells (i.e. > ~3.6 Å) from the parent molecule, and 

from each other, in order to reduce loss by diffusive recombination sufficiently to achieve the 

observed radical and solvated electron survival probabilities.  Studies by the Hammes-Schiffer 

group indicate that the KIE of ground state PCET reactions increases with the distance between 

acceptor and donor,58 and that the rate is thus determined by the solvent re-organization timescale 

rather than PCET.59 It is unclear whether such arguments will be similarly applicable to excited 

state PCET but, in the absence of supporting theory, we deem it unnecessarily complicated to 

suggest excited state PCET as the dominant route to charged products following 267 nm 

photoexcitation of phenol. 

A simpler explanation assumes that the same mechanism identified following excitation at 200 

nm applies when exciting at 267 nm also, but that it occurs on a much slower timescale. 267 nm 

excitation promotes phenol molecules to vibrationally excited levels (predominantly ring-

breathing vibrations 35,60,61) of its S1 state which relax to the vibrational ground state (S1(v=0)) in 

several picoseconds 62,63 – thereby reducing the total energy to ~4.5 eV. The PhO•
(aq) + H3O+

(aq) + 

e–
(aq) asymptote lies between 4.3–4.5 eV (see SI), i.e. only just below that of a PhOH(S1(v=0)) 

molecule. The deduced nanosecond reaction timescale could thus simply reflect slow 

autoionization from the S1 origin to the PhOH+
(aq) + e–

(aq) asymptote, followed by rapid 

deprotonation. The non-observation of phenol radical cations can be rationalized on the basis of 

their very short lifetime, recall the sub-picosecond decay of the PhOH+ transient we observe at 

200 nm (see Fig. 1(b)), and such a photoionization mechanism would not be expected to show a 
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significant KIE if the coupling mode involved in electron transfer does not involve O−H(D) 

stretching. 43,64 

The autoionization mechanism that we have proposed for photoexcited phenol has some 

similarities with phenolate (PhO–) in water, which generates phenoxyl radicals and solvated 

electrons within the first few picoseconds. 22The far more rapid autoionization observed for  

PhO–, likely reflects the 0.7 eV lower vertical ionization potential.30 The phenol and phenolate 

autoionization reactions yield the same products, however, ionization of phenol also produces a 

third product, a proton. This complicates the geminate recombination pathways, and allows for 

many possible sequential reactions (see SI). The two reactions that will most probably affect the 

yield of phenoxyl radicals and solvated electron transients in our data, include the same 

recombination reaction as for phenolate: phenoxyl radicals and electrons combine to form 

ground state phenolate molecules, that subsequently abstract a proton from an adjacent water 

molecule.  The other mechanism involves a proton scavenging a solvated electron and then upon 

encounter with the phenoxyl radical, reformation of the O–H bond. 

The present time-resolved TA data for phenol in aqueous H2O and D2O solutions are therefore 

most plausibly understood in terms of photoinduced autoionization.  Identical photoproducts are 

observed at short (200 nm) and long (267 nm) excitation wavelengths, but with very different 

formation timescales (femtosecond vs. nanosecond, respectively). Electrons are ejected 

immediately following 200 nm excitation; the high-energy phenol radical cation intermediate is 

formed and rapidly deprotonates to yield PhO• radicals.  In contrast, at 267 nm the photoexcited 

phenol molecules initially relax to the PhOH(S1(v=0)) level, i.e. to energies just above the 

minimum required to produce a PhO• radical, a solvated electron and a proton (see energetics in 

the SI). The measured timescales for forming these products allied with the lack of measurable 
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H/D KIE encourages the view that the observed products are formed via near-threshold 

autoionization, though the involvement of an excited state PCET mechanism cannot be wholly 

excluded at this stage. 

Phenol in aqueous solution surely constitutes one of the simpler test beds for ab initio 

calculations designed to explore near-threshold autoionization or possible excited state PCET 

mechanisms. 65,66 Understanding the nuclear motions associated with the solute, and any coupling 

to specific bath modes, are now crucial in order to reveal any role for PCET at low excitation 

energies and to advance a detailed understanding of our favored mechanism – autoionization – in 

phenol, and in larger biomolecules in which phenol (and related sub-units) acts as a 

chromophore.   
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