132 research outputs found

    A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators

    Get PDF
    Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address). Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i) make full use of pollution dispersion models; (ii) localize population on a fine-scale; and (iii) explicitly account for the presence of potential environmental and socioeconomic confounding

    Evaluation of Machine Learning Techniques for Inflow Prediction in Lake Como, Italy

    Get PDF
    Abstract Accurate streamflow prediction is a fundamental task for integrated water resources management and flood risk mitigation. The purpose of this study is to forecast the water inflow to lake Como, (Italy) using different machine learning algorithms. The forecast is done for different days ranging from one day to three days. These models are evaluated by three statistical measures including Mean Absolute Error, Root Mean Squared Error, and the Nash-Sutcliffe Efficiency Coefficient. The experimental results show that Neural Network performs better for streamflow estimation with MAE and RMSE followed by Support Vector Regression and Random Forest

    Novel coal gasification process: improvement of syngas yield and reduction of emissions

    Get PDF
    This article is intended to propose and model an innovative process layout for coal gasification that improves the production of syngas and also reduces the sulfur and CO2 emissions. The typical coal gasification process uses Sulfur Recovery Units to convert H2S to sulfur, but these have some disadvantage, e.g low sulfur price, coal charge with low sulfur flow rate, use of Tail Gas Treatment unit. Compared to the Claus process, this solution converts H2S and CO2 into syngas (economically appealing), reduces emission of H2S and CO2 and allows the use of coal charge with high sulfur flow rate, e.g. 9.5% mol/mol. The novel process takes advantage of a double amine wash, a thermal regenerative furnace and considers the recycle of the acid gases coming from the catalytic reactor to further promote the H2S conversion. In particular, the double amine wash is useful to purify the H2S stream to be sent to the thermal furnace from the syngas and CO2, in order to reduce the reactor inlet flow rate. The regenerative furnace is simulated using a large detailed kinetic scheme to appropriately describe the minor species (among them, pollutants like CS2 and COS). As a result, the recycle appears to substantially reduce the pollutant emissions. In addition, the conversion of the Claus process into the novel process doesn't require any change in the main equipment, just needing for a variation in the layout and the operating conditions431483148812th International Conference on Chemical and Process Engineering (ICheaP)2015-05ItaliaMilan

    Environmental Justice in Western Europe

    Get PDF
    In this chapter we aim to provide an overview of the variety of topics and methods that characterise the evolving set of environmental justice discourses in Western Europe. In the first section of this chapter the range of discourses on environmental justice in Western Europe is introduced through an overview that focuses on the forms of concern and normativity that have been central to environmental justice claim-making. This is followed by an overview of similarities and differences in methodological approaches and results regarding distributional inequalities, based on selected studies. In the second section the role of spatial and environmental planning and the involvement of citizens in planning processes and access to information will be dealt with, focusing therefore on questions of procedural justice. Decision making in this context will be focused on the specific context of implementation of the Aarhus Convention in the European Union. In the final section we take the dimension of future generations into account and discuss the relation between environmental justice and sustainability using the example of the energy sector and ways of dealing with nuclear power

    GASDS: A kinetic-based package for biomass and coal gasification

    Get PDF
    In this paper, a simulation package called GASDS is introduced. It is particularly suited to evaluate the pyrolysis, gasification and combustion of biomass and coal feedstocks. The aim of this work is to describe the package from a numerical point of view and its interface. Additionally, experimental results for a countercurrent fixed-bed biomass gasification reactor are reproduced. The influence of reactor and particle discretizations are investigated with respect to accuracy and computational time. Some differences are present between experimental and simulation results. In order to improve the agreement between simulation and experimental results it is suggested to improve the kinetic scheme of the solid phase and gas-solid reactions. The negligible differences in terms of predictions, instead, do not justify the adoption of finer discretizations for the particle and reactor, which imply longer computational times

    Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project

    Get PDF
    BACKGROUND: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. OBJECTIVES: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. METHODS: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5-10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration-response curves were estimated using a meta-smoothing approach. RESULTS: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5-10, and 14.4 μg/m3 in PM10 (lag 0-1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0-5 days). CONCLUSIONS: PM2.5 and PM2.5-10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards.This research was supported by the European Union under the grant agreement LIFE+ ENV/IT/327.S

    Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project

    Get PDF
    An association between occurrence of wildfires and mortality in the exposed population has been observed in several studies with controversial results for cause-specific mortality. In the Mediterranean area, forest fires usually occur during spring-summer, they overlap with Saharan outbreaks, are associated with increased temperature and their health effects are probably due to an increase in particulate matter. We analysed the effects of wildfires and particulate matter (PM10) on mortality in 10 southern European cities in Spain, France, Italy and Greece (2003-2010), using satellite data for exposure assessment and Poisson regression models, simulating a case-crossover approach. We found that smoky days were associated with increased cardiovascular mortality (lag 0-5, 6.29%, 95% CIs 1.00 to 11.85). When the effect of PM10 (per 10 µg/m(3)) was evaluated, there was an increase in natural mortality (0.49%), cardiovascular mortality (0.65%) and respiratory mortality (2.13%) on smoke-free days, but PM10-related mortality was higher on smoky days (natural mortality up to 1.10% and respiratory mortality up to 3.90%) with a suggestion of effect modification for cardiovascular mortality (3.42%, p value for effect modification 0.055), controlling for Saharan dust advections. Smoke is associated with increased cardiovascular mortality in urban residents, and PM10 on smoky days has a larger effect on cardiovascular and respiratory mortality than on other days.Peer ReviewedPostprint (published version

    Sulfur rich coal gasification and low impact methanol production

    Get PDF
    In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3%) and the higher methanol production (about 0.5%) without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide) by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme
    corecore