29 research outputs found

    Social tipping points and Earth systems dynamics

    Get PDF
    Recently, Early Warning Signals (EWS) have been developed to predict tipping points in Earth Systems. This discussion highlights the potential to apply EWS to human social and economic systems, which may also undergo similar critical transitions. Social tipping points are particularly difficult to predict, however, and the current formulation of EWS, based on a physical system analogy, may be insufficient. As an alternative set of EWS for social systems, we join with other authors encouraging a focus on heterogeneity, connectivity through social networks and individual thresholds to change

    A Model for the Reduction of Specific Surface Area of Powders with Age

    Get PDF
    PETN is a high explosive, sometimes stored for periods of up to many years, in powdered form. In storage, the explosive particles change size and shape owing to sublimation, condensation and surface di usion. AWE measurements are available on the changing particle size distri- bution (PSD), and the speci c surface area (SSA) of the powder, taken from experiments on accelerated ageing. But a mathematical model of the ageing process is wanted in order to interpret the processes at work. Various modelling issues and unusual features of the measure- ment data were discussed. Four models of important processes were developed, and are reported here. Model (i) addresses the fundamental physics associated with the transport of mass by sublimation, di usion and condensation. Model (ii) uses chemical kinetics to develop a system of ordinary di erential equations (ODEs) for the time-evolution of the frequencies of particle sizes. Model (iii) extends Model (ii) to a contin- uum particle size distribution. Lastly, Model (iv) considers the growth of particles as described by Cahn-Hilliard equations for the inter-particle transport of matter in Ostwald Ripening. Models (i) and (iv) include the complex geometry and thermodynamics of the problem. By con- trast, Models (ii) and (iii) focus on the time evolution of the PSD, but they are more di cult to associate with controllable variables, such as ambient temperature. Our discussions of models (ii) and (iii) suggest we can choose mass-transfer rate constants that reproduce the kind of ob- served evolution to a bimodal PSD. But more investigation is needed to determine how the rate constants may be associated with the particles' geometry and the thermodynamics of the mass transport processes

    Reduced-Risk Management of Rhagoletis cerasi Flies (Host Race Prunus) in Combination with a Preliminary Phenological Model

    Get PDF
    Seasonal flight activity of Rhagoletis cerasi (L.) (Diptera: Tephritidae) adults was monitored using yellow sticky traps at sweet cherry orchards under different management regimes in Bursa, northwestern Turkey, during 1997–1998. In the reduced-risk backyard orchards, soil ploughing in the fall or spring to destroy the pupae was combined with a single application of an insecticide, while conventionally managed orchards received six to seven insecticide applications for controlling adults. Traps in commercial orchards caught significantly fewer adults than those in reduced-risk backyard orchards. Levels of cherry fruit fly fruit damage were very low (0.1%) in commercial orchards, whereas infestation rates averaged 2.2% in reduced-risk orchards. A preliminary phenology model was developed for optimal timing of insecticide applications based on air temperature summations since 1 February. In the reduced-risk backyard orchards, the first flies were captured between 25 May and 2 June, corresponding to an average degree-day (DD) accumulation of 582.50 ± 10.50 DD at an altitude of 150 m. However, first adult emergence at 1170 m was recorded between 6 and 14 June, averaging 667.50 ± 14.50 DD. Adult emergence exhibited bimodal peaks in a single flight at low altitude but there was a single peak at high altitude sites. Total adult flight period averaged 459 ± 29.50 and 649 ± 25.50 DD at low and high altitude sites, respectively. Our prediction model suggests that the optimum spray-window for a single insecticide application occurs between 577.70 and 639.40 DD at 150 m and between 780.90 and 848.60 DD at 1170 m

    Evolving surface finite element method for the Cahn-Hilliard equation

    Get PDF
    We use the evolving surface finite element method to solve a Cahn- Hilliard equation on an evolving surface with prescribed velocity. We start by deriving the equation using a conservation law and appropriate transport for- mulae and provide the necessary functional analytic setting. The finite element method relies on evolving an initial triangulation by moving the nodes according to the prescribed velocity. We go on to show a rigorous well-posedness result for the continuous equations by showing convergence, along a subse- quence, of the finite element scheme. We conclude the paper by deriving error estimates and present various numerical examples

    Algometry to measure pain threshold in the horse's back - An in vivo and in vitro study

    Get PDF
    Abstract Background The aim of this study was to provide information on algometric transmission of pressure through the dorsal thoracolumbar tissues of the equine back. Using a commercially available algometer, measurements were carried out with six different tips (hemispheric and cylindrical surfaces, contact areas 0.5 cm2, 1 cm2, and 2 cm2). In nine live horses the threshold of pressure that lead to any reaction was documented. In postmortem specimens of five euthanized horses the transmission of algometer pressure onto a pressure sensor placed underneath the dorsal thoracolumbar tissues at the level of the ribs or the transverse lumbar processes respectively was measured. Results Algometer tips with a contact area of 1 cm2 led to widely similar results irrespective of the surface shape; these measurements also had the lowest variance. Contact areas of 0.5 cm2 resulted in a lower pressure threshold, and those of 2 cm2 resulted in a higher pressure threshold. The hemispheric shape of the contact area resulted in a higher pressure threshold, than the cylindrical contact area. Compared to the thoracic region, a significantly higher pressure threshold was found in the lumbar region in the live horses. This result corresponds to the increased tissue thickness in the lumbar region compared to the thoracic region, also documented as less pressure transmission in the lumbar region on the in vitro specimens. Conclusions Algometry is an easily practicable and well tolerated method to quantify pain but it is important to consider the many factors influencing the results obtained

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Evolving finite elements for advection diffusion with an evolving interface

    No full text
    The aim of this paper is to develop a numerical scheme to approximate evolving interface problems for parabolic equations based on the abstract evolving finite element framework proposed in (C M Elliott, T Ranner, IMA J Num Anal, 41:3, 2021, doi:https://doi.org/10.1093/imanum/draa062). An appropriate weak formulation of the problem is derived for the use of evolving finite elements designed to accommodate for a moving interface. Optimal order error bounds are proved for arbitrary order evolving isoparametric finite elements. The paper concludes with numerical results for a model problem verifying orders of convergence
    corecore