68 research outputs found

    Wear Properties of Cu-CNT Nanocomposites

    Get PDF

    Techniques of Linear Endobronchial Ultrasound

    Get PDF

    Study of the Surface Integrity and Heat Measurement of Hard Turning of Hard Chrome Coated EN24 Substrate

    Get PDF
    AbstractThe principal aim of this paper is to hard turn the hard chrome plated EN24 substrate using TiAlN coated PcBN inserts. The variables used for the experimentations are the spindle speed, feed, depth of cut, nose radius and cutting edge angle. EN24 substrate was coated with hexavalent chrome to a thickness of 170μm. The surface hardness before and after hard turning of hard chrome plated surfaces were studied. The temperature developed on the insert, workpiece and chips were studied in the present investigation. An experiment was carried out to determine the maximum heat development on the insert. The experimental results revealed that the maximum heat was observed at 2mm from the cutting edge on the top diagonal. The images obtained from the confocal microscope and scanning electron microscope discovered the nature of fracture of the chips from the work surfaces

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (10910.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler

    No full text
    Solid-state electric double-layer capacitors (EDLCs) based on corn starch biodegradable polymer electrolytes are fabricated. Silica is added into the corn starch polymer electrolytes to improve the ionic conductivity and capacitance of the EDLCs. The ionic conductivity as a function of temperature obeys the Arrhenius equation indicating ionic hopping mechanism in the polymer electrolytes. Linear sweep voltammetry shows that the prepared corn starch-based biopolymer electrolyte is stable in the range from −2.5 to 2.5 V. Electrical capacitance performances of these capacitors are studied by cyclic voltammetry, galvanostatic charge–discharge, and AC impedance spectroscopy. The discharge characteristics have been found to be almost linear, which confirms the capacitive behavior of the EDLC cell. The fabricated EDLC cells perform good cyclability up to 500 cycles with more than 90 % of coulombic efficiency

    The effect of antimony trioxide on poly (vinyl alcohol)-lithium perchlorate based polymer electrolytes

    No full text
    A new type of inorganic filler antimony trioxide (Sb2O3) is used to prepare composite polymer electrolytes based on poly (vinyl alcohol) (PVA) and lithium perchlorate (LiClO4) by solution casting technique. The incorporation of Sb2O3 enhances the ionic conductivity at ambient temperature and exhibits the highest ionic conductivity value of 9.51 x 10(-5) S cm(-1) upon the addition of 6 wt% Sb2O3. Thermogravimetric analyses (TGA) reveal that the second weight loss is reduced. This shows the improvement in thermal stability of electrolyte film upon addition of Sb2O3. Differential scanning calorimetry (DSC) analyses show that the glass transition temperature (T-g) value decreases with incorporation of Sb2O3. X-ray diffraction (XRD) studies show that the addition of Sb2O3 decreases the degree of crystallinity whereas scanning electron microscope (SEM) studies reveal the surface morphology of the prepared composite polymer electrolytes. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved

    Nanoscale Phenomena in Synthetic Functional Oxide Heterostructures

    No full text
    corecore