63 research outputs found

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors.

    Get PDF
    To improve clinicians\u27 ability to predict outcome after spinal cord injury (SCI) and to help classify patients within clinical trials, we have created a novel prediction model relating acute clinical and imaging information to functional outcome at 1 year. Data were obtained from two large prospective SCI datasets. Functional independence measure (FIM) motor score at 1 year follow-up was the primary outcome, and functional independence (score ≥ 6 for each FIM motor item) was the secondary outcome. A linear regression model was created with the primary outcome modeled relative to clinical and imaging predictors obtained within 3 days of injury. A logistic model was then created using the dichotomized secondary outcome and the same predictor variables. Model validation was performed using a bootstrap resampling procedure. Of 729 patients, 376 met the inclusion criteria. The mean FIM motor score at 1 year was 62.9 (±28.6). Better functional status was predicted by less severe initial American Spinal Injury Association (ASIA) Impairment Scale grade, and by an ASIA motor score \u3e50 at admission. In contrast, older age and magnetic resonance imaging (MRI) signal characteristics consistent with spinal cord edema or hemorrhage predicted worse functional outcome. The linear model predicting FIM motor score demonstrated an R-square of 0.52 in the original dataset, and 0.52 (95% CI 0.52,0.53) across the 200 bootstraps. Functional independence was achieved by 148 patients (39.4%). For the logistic model, the area under the curve was 0.93 in the original dataset, and 0.92 (95% CI 0.92,0.93) across the bootstraps, indicating excellent predictive discrimination. These models will have important clinical impact to guide decision making and to counsel patients and families

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Animal models for COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (frst detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the fndings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.info:eu-repo/semantics/acceptedVersio

    Enhancement of terahertz photoconductive antenna operation by optical nanoantennas

    Get PDF
    Photoconductive antennas are promising sources of terahertz radiation that is widely used for spectroscopy, characterization, and imaging of biological objects, deep space studies, scanning of surfaces, and detection of potentially hazardous substances. These antennas are compact and allow for generation of both ultrabroadband pulses and tunable continuous wave terahertz signals at room temperatures, with no need for high-power optical sources. However, such antennas have relatively low energy conversion efficiency of femtosecond laser pulses or two close pump wavelengths (photomixers) into the pulsed and continuous terahertz radiation, correspondingly. Recently, an approach to solving this problem that involves known methods of nanophotonics applied to terahertz photoconductive antennas and photomixers has been proposed. This approach comprises the use of optical nanoantennas for enhancing the absorption of pump laser radiation in the antenna gap, reducing the lifetime of photoexcited carriers, and improving the antenna thermal efficiency. This Review is intended to systematize the main results obtained by researchers in this promising field of hybrid optical-to-terahertz photoconductive antennas and photomixers. We summarize the main results on hybrid THz antennas, compare the approaches to their implementation, and offer further perspectives of their development including an application of all-dielectric nanoantennas instead of plasmonic ones
    corecore