31 research outputs found

    Optical and X-ray Properties of CAL 83: I. Quasi-periodic Optical and Supersoft Variability

    Full text link
    We have studied the long-term (~ years) temporal variability of the prototype supersoft X-ray source (SSS) CAL 83 in the LMC, using data from the MACHO and OGLE projects. The CAL 83 light curve exhibits dramatic brightness changes of ~1 mag on timescales of ~450 days, and spends typically ~200 days in the optical low state. Combined with archival XMM-Newton X-ray observations these represent the most extensive X-ray/optical study to date of this system, and reveal in much greater detail that the X-ray light curve is anti-correlated with the optical behaviour. This is remarkably similar to the behaviour of the "transient" SSS, RX J0513.9-6951, where the SSS outbursts recur on a timescale of ~168 days, and also anti-correlate with the optical flux. We performed simple blackbody fits to both high and low state X-ray spectra, and find that the blackbody temperature and luminosity decrease when the optical counterpart brightens. We interpret these long-term variations in terms of the limit-cycle model of Hachisu & Kato (2003a), which provides further support for these systems containing massive (~1.3 Msun) white dwarfs. In addition, we have refined their orbital periods in the MACHO and OGLE-III light curves to values of 1.047529(1) days and 0.762956(5) days for CAL 83 and RX J0513.9-6951, respectively.Comment: 9 pages, 8 figures, 3 tables, accepted for publication in MNRA

    Long-term properties of X-ray binaries in the magellanic clouds

    Get PDF
    Includes abstractIncludes bibliographical references.Long-term variability in all types of X-ray binaries is a well established characteristic, but due to observation limitations and lack of long-term monitoring capability these variations have not been studied before in a systematic way. In this thesis, we exploit the ~ 16 yr optical light curves from the MACHO and OGLE databases, and combine these with archival XMM-Newton X-ray observations to study the long-term properties of Be/X-ray binaries and Supersoft X-ray Sources in the Magellanic Clouds

    NGC 3105: a young open cluster with low metallicity

    Get PDF
    NGC 3105 is a young open cluster hosting blue, yellow and red supergiants. This rare combination makes it an excellent laboratory to constrain evolutionary models of high-mass stars. It is poorly studied and fundamental parameters such as its age or distance are not well defined. We intend to characterize in an accurate way the cluster as well as its evolved stars, for which we derive for the first time atmospheric parameters and chemical abundances. We identify 126 B-type likely members within a radius of 2.7±\pm0.6 arcmin, which implies an initial mass, Mcl≈M_{cl}\approx4100 M⊙_{\odot}. We find a distance of 7.2±\pm0.7 kpc for NGC 3105, placing it at RGCR_{GC}=10.0±\pm1.2 kpc. Isochrone fitting supports an age of 28±\pm6 Ma, implying masses around 9.5 M⊙_{\odot} for the supergiants. A high fraction of Be stars (≈\approx25 %) is found at the top of the main sequence down to spectral type b3. From the spectral analysis we estimate for the cluster a vradv_{rad}=+46.9±\pm0.9 km s−1^{-1} and a low metallicity, [Fe/H]=-0.29±\pm0.22. We also have determined, for the first time, chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. An overabundance of Ba is found, supporting the enhanced ss-process. NGC 3105 has a low metallicity for its Galactocentric distance, comparable to typical LMC stars. It is a valuable spiral tracer in a very distant region of the Carina-Sagittarius spiral arm, a poorly known part of the Galaxy. As one of the few Galactic clusters containing blue, yellow and red supergiants, it is massive enough to serve as a testbed for theoretical evolutionary models close to the boundary between intermediate and high-mass stars.Comment: 18 pages, 13 figures. Accepted for publication in A&

    Highly absorbed X-ray binaries in the Small Magellanic Cloud

    Full text link
    Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a search for highly-absorbed X-ray sources in the Small Magellanic Cloud (SMC) with a systematic analysis of 62 XMM-Newton SMC observations. We obtained a sample of 30 sources showing evidence for an equivalent hydrogen column density larger than 3x10^23 cm^-2. Five of these sources are clearly identified as HMXRBs: four were already known (including three X-ray pulsars) and one, XMM J005605.8-720012, reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many of them have possible NIR counterparts consistent with highly reddened early type stars in the SMC. While their number is broadly consistent with the expected population of background highly-absorbed active galactic nuclei, a few of them could be HMXRBs in which an early type companion is severely reddened by local material.Comment: 10 pages, 4 figures, 4 tables. Accepted for publication by Astronomy & Astrophysic

    A Luminous Be+White Dwarf Supersoft Source in the Wing of the SMC: MAXI J0158-744

    Get PDF
    We present a multi-wavelength analysis of the very fast X-ray transient MAXI J0158-744, which was detected by MAXI/GSC on 2011 November 11. The subsequent exponential decline of the X-ray flux was followed with Swift observations, all of which revealed spectra with low temperatures (~100eV) indicating that MAXI J0158-744 is a new Supersoft Source (SSS). The Swift X-ray spectra near maximum show features around 0.8 keV that we interpret as possible absorption from OVIII, and emission from O, Fe, and Ne lines. We obtained SAAO and ESO optical spectra of the counterpart early in the outburst and several weeks later. The early spectrum is dominated by strong Balmer and HeI emission, together with weaker HeII emission. The later spectrum reveals absorption features that indicate a B1/2IIIe spectral type, and all spectral features are at velocities consistent with the Small Magellanic Cloud. At this distance, it is a luminous SSS (>10^37 erg/s) but whose brief peak luminosity of >10^39 erg/s in the 2-4 keV band makes it the brightest SSS yet seen at "hard" X-rays. We propose that MAXI J0158-744 is a Be-WD binary, and the first example to possibly enter ULX territory. The brief hard X-ray flash could possibly be a result of the interaction of the ejected nova shell with the B star wind in which the white dwarf (WD) is embedded. This makes MAXI J0158-744 only the third Be/WD system in the Magellanic Clouds, but it is by far the most luminous. The properties of MAXI J0158-744 give weight to previous suggestions that SSS in nearby galaxies are associated with early-type stellar systems.Comment: 15 pages, 8 figures; ApJ accepte

    On the periodicities present in the optical light curves of SMC Be/X-ray binaries

    Full text link
    We present a comprehensive study of the periodic variations observed in OGLE I-band light curves of SMC Be/X-ray binaries, discovering new optical periodicities in 9 systems. We find that these periodicities derive from a number of mechanisms, notably disturbance of the decretion disk on the orbital period of the system, and aliased non-radial pulsations. We develop metrics that allow these mechanisms to be distinguished on the basis of the shape of the folded optical light curve, and use these metrics to categorise the periodicities present in \sim 50 SMC binary systems. We conclude that extreme care must be taken in the interpretation of the OGLE light curves since only around 30% of the periodicities present can be unambiguously attributed to orbital periods.Comment: 16 pages, 17 figures, accepted for publication in MNRA

    The XMM-Newton survey of the Small Magellanic Cloud: XMMUJ010633.1-731543 and XMMUJ010743.1-715953, two new Be/X-ray binary systems

    Full text link
    In the course of the XMM-Newton survey of the Small Magellanic Cloud (SMC), two new bright X-ray sources were discovered exhibiting the spectral characteris- tics of High Mass X-ray Binaries - but revealing only weak evidence for pulsations in just one of the objects(at 153s in XMMUJ010743.1-715953). The accurate X- ray source locations permit the identification of these X-ray source with Be stars, thereby strongly suggesting these systems are new Be/X-ray binaries. From blue spectra the proposed classification for XMMUJ010633.1-731543 is B0.5-1Ve and for XMMUJ010743.1-715953 it is B2IV-Ve.Comment: MNRAS (accepted), 12 pages, 17 figures, 4 table

    Discovery of the neutron star spin and a possible orbital period from the Be/X-ray binary IGR J05414-6858 in the LMC

    Full text link
    The number of known Be/X-ray binaries in the Large Magellanic Cloud is small compared to the observed population of the Galaxy or the Small Magellanic Cloud. The discovery of a system in outburst provides the rare opportunity to measure its X-ray properties in detail. IGR J05414-6858 was discovered in 2010 by INTEGRAL and found in another outburst with the Swift satellite in 2011. In order to characterise the system, we analysed the data from a follow-up XMM-Newton target of opportunity observation of the 2011 outburst and investigate the stellar counterpart with photometry and spectroscopy. We modelled the X-ray spectra from the EPIC instruments on XMM-Newton and compared them with Swift archival data. In the X-ray and optical light curves, we searched for periodicities and variability. The optical counterpart was classified using spectroscopy obtained with ESO's Faint Object Spectrograph at NTT. The X-ray spectra as seen in 2011 are relatively hard with a photon index of ~0.3-0.4 and show only low absorption. They deviate significantly from earlier spectra of a probable type II outburst in 2010. The neutron star spin period of P_s = 4.4208 s was discovered with EPIC-pn. The I-band light curve revealed a transition from a low to a high state around MJD 54500. The optical counterpart is classified to B0-1IIIe and shows Halpha emission and a variable NIR excess, vanishing during the 2010 outburst. In the optical high state, we found a periodicity at 19.9 days, probably caused by binarity and indicating the orbital period.Comment: Accepted for publication in A&A, 10 pages, 12 figure

    Characterizing X-ray binary long-term variability

    Full text link
    Long-term ("superorbital") periods or modulations have been detected in a wide variety of both low and high-mass X-ray binaries at X-ray and optical wavelengths. A variety of mechanisms have been proposed to account for the variability properties, such as precessing and/or warped accretion discs, amongst others. The All Sky Monitor on board the Rossi X-ray Timing Explorer provides the most extensive (~15 years) and sensitive X-ray archive for studying such behaviour. It is also clear that such variations can be intermittent and/or a function of X-ray spectral state. Consequently, we use a time-dependent Dynamic Power Spectrum method to examine how these modulations vary with time in 25 X-ray binaries for which superorbital periodicities have been previously reported. Our aim is to characterize these periodicities in a completely systematic way. Some (such as Her X-1 and LMC X-4) are remarkably stable, but others show a range of properties, from even longer variability time-scales to quite chaotic behaviour.Comment: 17 pages, 26 figures, 4 tables, Accepted for publication in MNRAS on 4 November 201
    corecore