39 research outputs found

    Effect of Gypsum and Drought on Pod Initiation and Crop Yield in Early Maturing Groundnut (Arachis hypogaea) Genotypes

    Get PDF
    Gypsum application and irrigation increased yield in early maturing groundnut genotypes in experiments using line source and conventional irrigation. Response to gypsum varied with genotype; with some gypsum increased yields at all water application rates, in some genotypes there was no response, while with others gypsum increased yield in drought conditions. In a separate study of the effect of gypsum and drought on pod initiation and development in three groundnut genotypes, gypsum did not greatly influence pod initiation when adequate irrigation was applied, but was beneficial when water was withheld during pod set and again during pod filling. Crops where the combination of gypsum and genotype were most advantageous in the first drought period subsequently grew more slowly so that there were no final differences in response to gypsum. Cultivar EC 76446(292) had a higher requirement for gypsum and was more susceptible to drought than the other two genotypes

    Isolation of intact mesophyll cells from the leaves of higher plants

    Get PDF
    A total of 146 species of angiosperms belonging to 35 taxonomically diverse families were screened for the isolation of living mesophyll cells from the leaves. Seventy-three species belonging to 22 families, on mild maceration in mortar with the isolation medium (pH 5.8) containing 0.7 M mannitoJ, 2 mM EDTA, 5 mM MgCl2, 5 mM K2HPO4 and 1 mM NaNO3, followed by fractional centrifugation, yielded intact mesophyll cells as seen under a research microscope. The high frequency of cell release, associated with the high percentage recovery of chlorophyll in cells was a common feature of most of the plant species examined by us. Nearly 87% of the chlorophyll present in the leaf could be recovered from the isolated cells in Dolichos lablab. The isolated cells retained active photosynthetic carbon metabolism as evidenced by high rates of ferricyanide reduction as well as carbon assimilation

    Hydraulic Press Measurements of Leaf Water Potential in Groundnuts

    Get PDF
    The hydraulic press was compared with the dew point psychrometer and the pressure chamber methods for measuring leaf water potential (Ψ) in groundnuts (Arachis hypogaea L.). For measurements on the same leaf, regression analysis revealed that the slopes did not differ significantly from unity. An analysis of functional relations between measurements made by the press and the dew point psychrometer or the press and the pressure chamber showed that the error variance of the press was similar to those of the two other methods. Therefore, we conclude that for groundnuts the performance of the press, the dew point psychrometer and the pressure chamber are similar

    Phenotypic landscape inference reveals multiple evolutionary paths to C4_4 photosynthesis

    Get PDF
    C4_4 photosynthesis has independently evolved from the ancestral C3_3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4_4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3_3, C4_4, or intermediate C3_3-C4_4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4_4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4_4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4_4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait

    Differences in yield determining processes of groundnut (Arachis hypogaea L.) genotypes in varied drought environments

    Get PDF
    Thirty-six groundnut gentoypes of varied origin were evaluated for their yield, crop growth rates (C), and partitioning to reproductive sinks (p) in three trials. In the trials irrigation and sowing date were used to vary the amount of water available either throughout the crops' life, or through the grain filling phase. Genotype performance across the five environments for these attributes showed that although differences in C existed, differences in the stability of the partitioning were the dominant attribute of genotypes adapted to the drought prone Sahelian region. Data suggested that these differences were more attributable to tolerance to temperature and/or humidity than water stress. Over all treatments canopy temperatures relative to air (CATD) were strongly correlated with the C observed, but not so with yield; and differences between genotypes in the relationship between C and CATD were not statistically significant

    Within-individual phenotypic plasticity in flowers fosters pollination niche shift

    Get PDF
    Authors thank Raquel Sánchez, Angel Caravante, Isabel Sánchez Almazo, Tatiana López Pérez, Samuel Cantarero, María José Jorquera and Germán Fernández for helping us during several phases of the study and Iván Rodríguez Arós for drawing the insect silhouettes. This research is supported by grants from the Spanish Ministry of Science, Innovation and Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017- 86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18- FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness (RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund (ERDF), reference SOMM17/6109/UGR.Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer.Spanish Ministry of Science, Innovation and Universities (EU FEDER funds) CGL2015-71634-P CGL2015-63827-P CGL2017-86626-C2-1-P CGL2017-86626-C2-2-P UNGR15-CE-3315Junta de Andalucia P18-FR-3641Xunta de GaliciaBBVA Foundation PR17_ECO_0021Spanish Ministry of Economy and Competitiveness RYC-2012-12277Consejeria de Economia, Conocimiento, Empresas y Universidad SOMM17/6109/UGREuropean Union (EU) SOMM17/6109/UG

    The evolutionary ecology of C-4 plants

    Get PDF
    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche – growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification

    Effect of Water Stress on Photosynthesis and Growth in Two Teak Phenotypes

    No full text
    corecore