11 research outputs found

    Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have complex culture requirements, are inherently heterogeneous, and are expensive to produce, which has restricted their use on automated patch clamp (APC) devices. Here, we used high efficiency differentiation protocols to produce cardiomyocytes from six different hPSC lines for analysis on the Patchliner (Nanion Technologies GmbH) APC platform. We developed a two-step cell preparation protocol that yielded cell catch rates and whole-cell breakthroughs of āˆ¼80%, with āˆ¼40% of these cells allowing electrical activity to be recorded. The protocol permitted formation of long-lasting (>15ā€‰min), high quality seals (>2ā€‰GĪ©) in both voltage- and current-clamp modes. This enabled density of sodium, calcium, and potassium currents to be evaluated, along with doseā€“response curves to their respective channel inhibitors, tetrodotoxin, nifedipine, and E-4031. Thus, we show the feasibility of using the Patchliner platform for automated evaluation of the electrophysiology and pharmacology of hPSC-CMs, which will enable considerable increase in throughput for reliable and efficient drug evaluation

    A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays

    Get PDF
    Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 ?M in cardiomyocytes cultured on the co-polymer compared to 0.5 ?M on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials

    Investigating the Complex Arrhythmic Phenotype Caused by the Gain-of-Function Mutation KCNQ1-G229D

    Get PDF
    British Heart Foundation (BHF) (FS/12/59/29756 to SH, RG/15/15/31742 to AT, FS/17/22/32644 to AB-O, and SP/15/9/31605, RG/15/6/31436, PG/14/59/31000, RG/14/1/30588, P47352/Centre for Regenerative Medicine to CD)National Institute for Health Research Barts Biomedical Research CentreWellcome Trust (100246/Z/12/Z to BR and XZ)National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/P001076/1 to AB-O, CRACK-IT. FULL PROPOSAL code 35911-259146., NC/K000225/1 to CD)Engineering and Physical Sciences Research Council Impact Acceleration Award (EP/K503769/1 to BR)CompBioMed project (No. 675451 to BR)Oxford BHF Centre of Research Excellence (RE/08/004/23915 and RE/13/1/30181 to BR)China Scholarship Council to XZBIRAX (04BX14CDLG to CD)Medical Research Council (MR/M017354/1 to CD)Heart Research United Kingdom (TRP01/12 to CD

    Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform

    Get PDF
    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~ 30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

    Current status of drug screening and disease modelling in human pluripotent stem cells

    Get PDF
    The emphasis in human pluripotent stem cell (hPSC) technologies has shifted from cell therapy to in vitro disease modelling and drug screening. This review examines why this shift has occurred, and how current technological limitations might be overcome to fully realise the potential of hPSCs. Details are provided for all disease-specific human induced pluripotent stem cell lines spanning a dozen dysfunctional organ systems. Phenotype and pharmacology have been examined in only 17 of 63 lines, primarily those that model neurological and cardiac conditions. Drug screening is most advanced in hPSC-cardiomyocytes. Responses for almost 60 agents include examples of how careful tests in hPSC-cardiomyocytes have improved on existing in vitro assays, and how these cells have been integrated into high throughput imaging and electrophysiology industrial platforms. Such successes will provide an incentive to overcome bottlenecks in hPSC technology such as improving cell maturity and industrial scalability whilst reducing cost
    corecore