20 research outputs found

    Quantitative Analysis of Humectants in Tobacco Products Using Gas Chromatography (GC) with Simultaneous Mass Spectrometry (MSD) and Flame Ionization Detection (FID)

    Get PDF
    This paper describes the modification of an existing gas chromatographic (GC) method to incorporate simultaneous mass spectrometric (MSD) and flame ionization detection (FID) into the analysis of tobacco humectants. Glycerol, propylene glycol, and triethylene glycol were analyzed in tobacco labeled as roll-your-own (RYO), cigar, cigarette, moist snuff, and hookah tobacco. Tobacco was extracted in methanol containing 1,3-butanediol (internal standard), filtered, and separated on a 15 m megabore DB-Wax column. Post-column flow was distributed using a microfluidic splitter between the MSD and FID for simultaneous detection. The limits of detection for the FID detector were 0.5 μg/mL (propylene glycol and triethylene glycol) and 0.25 μg/mL (glycerol) with a linear range of 2–2000 μg/mL (propylene glycol and triethylene glycol) and 1–4000 μg/mL (glycerol). The limits of detection for the MSD detector were 2 μg/mL (propylene glycol and triethylene glycol) and 4 μg/mL (glycerol) with a linear range of 20–2000 μg/mL (propylene glycol and triethylene glycol) and 40–4000 μg/mL (glycerol). Significant improvement in the sensitivity of the MSD can be achieved by employing selective ion monitoring (SIM) detection mode. Although a high degree of correlation was observed between the results from FID and MSD analyses, marginal chromatographic resolution between glycerol and triethylene glycol limits the applicability of FID to samples containing low levels of both of these humectants. Utilizing MSD greatly improves the reliability of quantitative results because compensation for inadequate chromatographic resolution can be accomplished with mass selectivity in detection

    Identification of tobacco-related compounds in tobacco products and human hair

    Get PDF
    Analyses of tobacco products and their usage are well-researched and have implications in analytical chemistry, forensic science, toxicology, and medicine. As such, analytical methods must be developed to extract compounds of interest from tobacco products and biological specimens in order to determine tobacco exposure. In 2009, R.J. Reynolds Tobacco Co. released a line of dissolvable tobacco products that are marketed as a smoking alternative. The dissolvables were extracted and prepared by ultrasonic extractions, derivatization, and headspace solid phase microextraction (SPME) with analysis by gas chromatography-mass spectrometry (GC-MS). The results show that the compounds present are nicotine, flavoring compounds, humectants and binders.1, 2 Humectant concentrations vary among different tobacco types depending on the intended use. Humectants were quantified in various tobacco types by GC and “splitting” the column flow between a flame ionization detector (FID) and an MS using a microfluidic splitter in order to gain advantage from the MS’s selectivity. The results demonstrated excellent correlation between FID and MS and show that MS provides a higher level of selectivity and ensures peak purity.3 Chemometrics was also used to distinguish products by tobacco type. Hair is a common type of evidence in forensic investigations, and it is often subjected to mitochondrial DNA (mtDNA) analysis. Preliminary data was gathered on potential “lifestyle” markers for smoking status as well as any indications of subject age, gender, or race by investigating the organic “waste” produced during a mtDNA extraction procedure. The normally discarded organic fractions were analyzed by GC-MS and various lipids and fatty acids were detected. At this point, a total vaporization-SPME (TV-SPME) method was theorized, developed, and optimized for the specific determination of nicotine and its metabolite, cotinine. The theory of TV-SPME is to completely vaporize an organic extract which will eliminate the partitioning between the sample and the headspace, thereby simplifying the thermodynamic equilibrium. Parameters such as sample volume, incubation temperature, and extraction time were optimized to achieve the maximum analyte signal. Response surface methodology (RSM) is a statistical model that is very useful in predicting and determining optimum values for variables to ensure the ideal response. RSM was used to optimize the technique of TV-SPME for the analysis of nicotine and cotinine. Lastly, quantitation of nicotine and cotinine in human hair typically requires large sample sizes and extensive extraction procedures. Hence, a method using small sample sizes and a simple alkaline digestion followed by TV-SPME-GC-MS has been developed. Hair samples were collected from anonymous volunteers and nicotine and cotinine were identified and quantitated in the hair of tobacco users

    Development of a tiered and binned genetic counseling model for informed consent in the era of multiplex testing for cancer susceptibility

    Get PDF
    In several papers, Hauer (1988, 1989, 2000a, 2000b, 2016) has argued that the level of safety built into roads is unpremeditated, i.e. not the result of decisions based on knowledge of the safety impacts of design standards. Hauer has pointed out that the development of knowledge about the level of safety built into roads has been slow and remains incomplete even today. Based on these observations, this paper asks whether evolutionary theory can contribute to explaining the slow development of knowledge. A key proposition of evolutionary theory is that knowledge is discovered through a process of learning-by-doing; it is not necessarily produced intentionally by means of research or development. An unintentional discovery of knowledge is treacherous as far as road safety is concerned, since an apparently effective safety treatment may simply be the result of regression-to-the-mean. The importance of regression-to-the-mean was not fully understood until about 1980, and a substantial part of what was regarded as known at that time may have been based on studies not controlling for regression-to-the-mean. An attempt to provide an axiomatic foundation for designing a safe road system was made by Gunnarsson and Lindström (1970). This had the ambition of providing universal guidelines that would facilitate a preventive approach, rather than the reactive approach based on accident history (i.e. designing a system known to be safe, rather than reacting to events in a system of unknown safety). Three facts are notable about these principles. First, they are stated in very general terms and do not address many of the details of road design or traffic control. Second, they are not based on experience showing their effectiveness. Third, they are partial and do not address the interaction between elements of the road traffic system, in particular road user adaptation to system design. Another notable fact consistent with evolutionary theory, is that the safety margins built into various design elements have been continuously eroded by the development of bigger and faster motor vehicles, that can only be operated safely if roads are wider and straighter than they needed to be when motor vehicles were smaller and moved slower.submittedVersio

    Comparison of Innovative Molecular Approaches and Standard Spore Assays for Assessment of Surface Cleanliness ▿

    No full text
    A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces

    Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens

    Get PDF
    Background: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. Results: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. Conclusions: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome
    corecore