45 research outputs found

    Electromagnetic Radiation from a Spherical Static Current Source Coupled to Harmonic Axion Field

    Get PDF
    The electromagnetic fields generated from a static current source on a spherical surface are calculated in the framework of axion electrodynamics to first order in the coupling parameter. Comparisons of the results are made with reference to various results obtained in conventional Maxwell electrodynamics, as well as previous results obtained for point magnetic dipole source coupled to harmonic axion fields. Distinct features from the results so obtained are highlighted for possible experimental probing of the axions via electromagnetic interactions. In particular, electromagnetic radiation from sources with strong magnetic field is studied which may enable the detection of a cosmic axion field from its interaction with objects like neutron stars

    Topological Magnetoelectric Effect as Probed by Nanoshell Plasmonic Modes

    Get PDF
    Axion electrodynamics is applied to study the response of a plasmonic nanoshell with a core made of topological insulator (TI) materials. The electric polarizability of such a system is calculated in the long wavelength limit via the introduction of two scalar potentials satisfying the various appropriate boundary conditions. Our focus is on the topological magneto-electric effect (TME) as manifested in the coupled plasmonic resonances of the nanoshell. It is found that for a TI with broken time-reversal symmetry, such TME will lead to observable red-shifts in the coupled plasmonic modes, with more significant manifestation of such shifts for the bonding modes of a metallic nanoshell. It is speculated that such universal red-shift could be a manifestation of the fundamental dual symmetry as generalized for axion electrodynamics

    Operation of a hybrid modular multilevel converter during grid voltage unbalance

    Get PDF
    The recently proposed parallel hybrid modular multilevel converter is considered to be a low loss, low component count converter with soft switching capability of the ‘main’ H-bridge. The converter has similar advantages to other emerging modular multilevel converter circuits being considered for HVDC power transmission and can be made compact which is desirable for offshore application. However, during ac network unbalance the individual ‘chain-links’ exchange unequal amounts of power with the grid which requires appropriate remedial action. This paper presents research into the performance of the converter and proposes a suitable control method that enables the converter to operate during grid voltage unbalance. The proposed control concept involves the use of asymmetric third harmonic voltage generation in the ‘chain-links’ of the converter to redistribute the power exchanged between the individual ‘chain-links’ and the grid. Mathematical analysis and simulation modelling with results are presented to support the work described

    Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygium glaucum at High Patch Contrast

    Get PDF
    Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast

    Nonlocal effects on optical and molecular interactions with metallic nanoshells

    Get PDF
    Theoretical studies of the optical response of metallic nanoshells have been carried out, where quantum effects are partially accounted for through the application of a nonlocal response model for shells of mesoscopic dimensions. Both far field and near field interactions are considered, with the incident source being a plane wave and an emitting molecular dipole, respectively. It is found that these nonlocal effects can lead to significant deviations from macroscopic electrodynamic theory, for shells of ultrasmall dimensions (nm) or ultrathin thickness (~1 nm), and are particularly significant for processes involving higher multipolar responses of the nanoshells. It is further concluded that these effects can still be observable, even in the presence of possibly large interfacial scattering for the free electrons in these nanoshells
    corecore