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Nonlocal effects on optical and molecular interactions with metallic nanoshells

Railing Chang' and P. T. Leung?
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and Center of Nanostorage Research, National Taiwan University, Taipei 10617, Taiwan, Republic of China
2Department of Physics, Portland State University, P. O. Box 751, Portland, Oregon 97207-0751, USA
(Received 29 April 2005; revised manuscript received 23 January 2006; published 28 March 2006)

Theoretical studies of the optical response of metallic nanoshells have been carried out, where quantum
effects are partially accounted for through the application of a nonlocal response model for shells of mesos-
copic dimensions. Both far field and near field interactions are considered, with the incident source being a
plane wave and an emitting molecular dipole, respectively. It is found that these nonlocal effects can lead to
significant deviations from macroscopic electrodynamic theory, for shells of ultrasmall dimensions
(<10 nm) or ultrathin thickness (~1 nm), and are particularly significant for processes involving higher
multipolar responses of the nanoshells. It is further concluded that these effects can still be observable, even in

the presence of possibly large interfacial scattering for the free electrons in these nanoshells.

DOI: 10.1103/PhysRevB.73.125438

I. INTRODUCTION

Since its first successful synthesis using chemical meth-
ods in the late 1990s,! the metallic nanoshell has become a
unique plasmonic system and has been very actively studied
in the past decade.!~!! This is due both to the capability of
these shells in enhancing various optical processes, as well as
the high tunability in their plasmon resonance frequencies
via the control of the shell thickness relative to the size of the
core. Experimentally, both dielectric'=3 and hollow*> cores
can be fabricated using methods of colloidal chemistry. Fur-
thermore, by varying the shell thickness towards the thin
shell limit (in the order of a few nm), the plasmon frequency
can be adjusted across the whole visible spectrum—ifrom
near UV to near IR.?

Theoretically, most of the previous investigations on the
optical property of this system have applied classical electro-
dynamics in the form of the Mie scattering theory,>!0-12
although in a few cases microscopic theory such as the time-
dependent density functional theory (TDDFT) has also been
formulated.®” While the Mie approach is limited to the bulk
dielectric response of the nanoshell, the previous application
of TDDFT is mostly limited to dipolar response of the sys-
tem, as in the study of the photoabsorption by these shells.®’
While dipolar response is sometimes sufficient to account for
light scattering and absorption phenomena from these
nanostructures,'® higher mulipolar response is necessary in
describing the interaction between emitting molecular spe-
cies in the vicinity of these structures, such as in problems
involving enhanced molecular fluorescence and surface-
enhanced Raman scattering (SERS).? Moreover, the TDDFT
approach, even when it is extended to treat multipolar re-
sponse, is often limited to very small sizes (~1-2 nm) of
the structure.* It will be therefore of interest if one can
investigate the optical response of these nanoshells to all
order of multipoles, accounting for the microscopic quantum
mechanical nature of the metallic electrons in these systems
of mesoscopic sizes (e.g., ~10 nm).

It is the purpose of the present work to apply a nonlocal
(NL) model previously established in the literature to study
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the optical response of these ultrasmall metallic nanoshells,
accounting for quantum effects through the application of
appropriate NL dielectric functions.!> We shall also account
for the scattering between the metallic electrons and the shell
boundaries. This can lead to a damping rate in the dielectric
function much greater than the one for bulk metals and can
possibly suppress the NL effects. We shall see below that
despite this damping, the NL effects are still likely observ-
able in processes involving multipolar interaction with the
nanoshell.

II. FORMULATION

For structures of tens of nanometers which are much
smaller than optical and UV wavelengths, quasistatic theory
can be applied and their optical response can be determined
largely by the multipole polarizabilities of the system.'* Ac-
counting for NL response, we have recently!’ studied such
a theory for a spherical shell of inner radius a and outer
radius b, where we have assumed the region outside the shell
(b<r) to be vacuum and the inner core (r<a) filled with a
dielectric of real dielectric constant &', while the shell region
(a<r<b) is filled with metal described by a NL isotropic
dielectric function &(k, w) which is both temporal and spatial
dispersive. For such a system, the NL polarizability has been
derived previously in the literature via the semiclassical in-
finite barrier (SCIB) model.'® The main idea of this model is
to assume a fictitious continuation of the metallic region be-
yond the geometrical boundaries at r=a and r=»b. By intro-
ducing an additional boundary condition (ABC) to require
the radial components of the displacement vectors (D,) to be
discontinuous at the boundaries, which corresponds to the
presence of a fictitious external surface charge at these
boundaries, the electric field can hence be smoothly extended
across the geometrical boundaries. In this SCIB model, the
NL response of the metal can then be obtained using Fourier
transform techniques. While the result described in Ref. 16
via the surface impedance concept is actually more general
and can be applied to the case when both the core and shell

©2006 The American Physical Society
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are described by a NL dielectric function, we have repro-
duced their result for our nanoshell by directly matching the
ABC across the boundaries. In slightly different notations,
the €th order NL polarizability can be expressed as
follows:!>17

_ (M
YW=\ e+ 1)B-by

where the quantities 8 and 7y are defined as follows:

)b2€+1 = Agb%]“, (1)

a€+1 2
B= €b€_1F(a,b) +(€+ 1)D*F(b,b) + —&'ab*((2¢ + 1)
T

X[F(a,a)F(b,b) — F(a,b)F(b,a)], (2)
€ +1 26+1
R
a€+1
- l(l+1) x; F(b,a), (3)

and the function F(x,y) is defined in the form of an
integral,'®

Flx.y) =f Je(kx)j(ky) dk. @)
o elkw)

We have also derived explicitly the corresponding local limit
of this model'® as shown in the Appendix. In the following,
we shall present a numerical study of different aspects of the
NL effects, including in particular the role of the shell thick-
ness and the dielectric core on the NL response of these
nanoshells. We shall illustrate the NL effects by comparing
the results obtained from Eq. (1) with those from Eq. (A2)
for the local case, and we shall study the interaction between
both optical far fields and near fields with the nanoshell.

In the case with incident far fields, we shall study the
extinction efficiency (absorption and scattering) for plane
waves incident on these nanoshells. We shall limit to the
dipole approximation (with light wavelength A>5~ 10 nm)
in which the absorption and scattering efficiencies can be

obtained from the following well-known expressions:°
8
Qab= Tlm(Al)b’ (5)
and
8(2mb\*
=== A 6
Qsc 3< N > | l| ( )

In the case of near field interactions, we shall study the
modified decay rate and emission frequency shift of an emit-
ting molecule close to the shell. These can be obtained in a
phenomenological model in terms of the natural decay rate
as follows: '8

39
FM/FO =1+ % Im(G), (7)
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3q
Awy/Ty=- TE] Re(G), (8)

where ¢, I, and k are respectively the quantum yield, natu-
ral decay rate, and the natural emission wave number of the
molecule. In Egs. (7) and (8), the G factor is defined as

p2i1
G=2, Azflrzw, )
1
with f,=(I+1)? [f,=1(I+1)/2] for tangential [radial] dipole
and r being the radial coordinate of the molecule. We shall
study the NL effects on the results in Egs. (5)—(8) for differ-
ent size and thickness of the shell.

III. NUMERICAL RESULTS AND DISCUSSION

We have carried out some model calculations to illustrate
the NL effects. For the dielectric response of the metal, we
have adopted both the hydrodynamic and the Lindhard-
Mermin (LM) models. In the case of the hydrodynamic
model, we have

2
s(k,w)zl——w; (10)

o(w+il) - vik®’

where , and I' are the plasmon frequency and damping
factor of the electrons, respectively, and vy=+/(3/5)vy with
v being the Fermi velocity; Eq. (4) can be integrated ana-

Iytically to obtain

F( b) T (a>€+1/2 1
=50+ )\0)

2

+ L( 2 2 )I€+1/2(RG)K€+1/2(EZ7),
2Vab \ w, - o(w+il')
(11)
where [,,K, are modified Bessel functions, and &k

= ULO\/w;—w(wHF). In the case of the LM model," Eq. (4)

can only be evaluated numerically. Note that we have ig-
nored the interband term, for our focus here is in the NL
effects on the free electron gas. This is in the same spirit as
the approach in recent theoretical studies of radiative decay
of plasmons in metallic nanoshells,'? with the understanding
that the interband term can always be added to these dielec-
tric functions if needed in the comparison with experiments.’

To numerically illustrate the NL effects, we shall limit our
calculations to ultrasmall nanoshells of dimensions similar to
those studied in Ref. 16. Although most of the previous ex-
periments have studied nanoshells of greater dimensions,
some studies have nevertheless reported nanoshells down to
dimensions with a radius ~10 nm.’ Further experimental ad-
vance may soon come to even smaller dimensions, which
will make our present calculations and the previous ones®!°
more relevant to observations. In the following, we shall
study the NL effects for a silver nanoshell with the inside
either hollow or filled with glass, the later being a common
system studied in recent experimental works.?

Figure 1 shows the extinction for a silver shell of dimen-
sions a=2.5 nm and »=3.0 nm. As in previous work,'® bulk
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FIG. 1. Extinction efficiency of a silver nanoshell with inner
radius a=2.5 nm and outer radius »=3.0 nm for (a) a glass core (b)
a hollow core according to the Drude (dashed), hydrodynamic (dot-
ted), and Lindhard-Mermin (solid) models, respectively. Note that
the results for the hydrodynamic model are rescaled.

parameters for metal are used in our calculations. Thus, the
plasmon frequency for Ag is taken as wp=1.36X10'® s,
and the damping constant accounting for interfacial scatter-
ing has the following form:>!> ['=T'gy; x+Avg/(b—a), with
Fpuk=2.56 X 10" s7! and vy=1.39X10° m/s for silver.
Without loss of generality, we have set the geometric factor
A=1, in accord with recent simulation studies on these
nanoshells.!' Previously,”” we have shown that the NL ef-
fects generally lead to a lower value of absorption and scat-
tering for the nanoshell, with slightly blueshifted
resonances' in both the antisymmetric (w,) and symmetric
(w_) coupled modes (see the Appendix for a discussion of
these modes). This is also seen here for both the case of a
Ag-glass nanoshell [ Fig. 1(a)] and a hollow Ag nanoshell
[ Fig. 1(b)]. Also, it is found that both the hydrodynamic and
LM models yield very close results (within a few %) in the
presence of such a relatively large surface-scattering damp-
ing effect (A=1). Note that for clarity purpose, we have res-
caled the hydrodynamic results in the figure. We have ob-
served that the two models will differ in the prediction of
additional “bulk resonances”?® within the metal shell at fre-
quencies above wp for smaller values of A.

By comparing the two results, it can be seen that the
effect of filling the shell with glass is to redshift the reso-
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nance frequencies (both w, and w_), as observed previously
in the literature.?! Furthermore, it is seen that the antisym-
metric mode has a stronger extinction in the Ag-glass case,
while the symmetric mode is weaker in extinction for this
case. Usually, it is the symmetric mode which has a stronger
absorption due to the overall larger induced dipole moment
in this case.?! However, since these extinction coefficients
are also proportional to the frequency, as is clear from Egs.
(5) and (6), the overall effect shows that when the shell is
filled with glass, the absorption becomes even stronger for
the w, mode. On the other hand, in the hollow case, we
reobtain a larger extinction for the w_ mode. We believe this
is due to the fact that the w_ mode has a much greater ab-
sorption intensity than that of the w, mode for the hollow
case, as compared to the situation in the glass-filled case.”!
Moreover, the blueshift due to the NL effects will lead to a
smaller relative redshift between the Ag-glass and the hollow
case for both the two plasmon modes.

Next we want to demonstrate that in the nanoshell case,
the NL effects can be quite significant even for a relatively
large shell with a very thin shell thickness. Figure 2 shows
the real and imaginary parts of the spectral dipole polariz-
ability for a Ag nanoshell of various metal thickness with an
outer radius of 10 nm. It is seen that when the shell thickness
goes down from 5 nm to 1 nm, the NL effects (only the LM
model is shown) become relatively more prominent (with the
peak shifts about twice as great). In particular, the magni-
tudes of the dispersion and the absorption are again sup-
pressed (up to ~12%) by the NL effects in the case of very
thin shells. Furthermore, the effects due to the increase in
damping as the shell thickness decreases can also be clearly
seen from the widths in the results of Fig. 2(b).

While the NL effects are relatively small in the above
examples where we have limited to dipolar response for far
field interaction with ultrasmall nanoshells, we next study the
interaction of the nanoshell with a fluorescing molecular di-
pole in close proximity!’ by calculating the quantities in Egs.
(7) and (8). As is clear from Eq. (9), many higher order
multipolar responses will have to be included and we thus
expect the NL effects to be more significant.'® This is under-
standable since higher multipolar response corresponds to
excitations by radiation with large angular momentum—
implying a large wave vector (momentum) along the
nanoshell surfaces, which in turn implies larger significance
of the NL effects. Figure 3 shows the spectrum of the nor-
malized decay rate and the frequency shift for both a radial
and a tangential molecular dipole fluorescing in the vicinity
at 1 nm from a nanoshell. Although the results of both the
hydrodynamic and Lindhard-Mermin models are again very
close, one can observe their distinct feature compared to the
Drude model (up to several times difference at resonance
frequency). The shallow dip at ©=0.6w, (0=0.75w,) for the
local (nonlocal) case corresponds to the gap between sym-
metric and antisymmetric modes. Since the calculation here
involves the overall contributions from all higher order mul-
tipoles, the “peaks” in the spectrum are not as distinct as
those in the simple dipole spectrum for the extinction coef-
ficients. Rather, they will depend on the relative contribution
of each of the multipole terms. Note that the frequency shift
in the local case turns positive as the emission frequency of
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FIG. 2. Real (a) and (b) and
imaginary (c) and (d) parts of the
dipolar polarizability for a glass-
filled silver nanoshell with outer

radius »=10.0 nm and inner ra-
dius: (i) a=5.0 nm for (a) and (c);
and (ii) a=9.0 nm for (b) and (d).
Different lines denote results from
different models in the same way
as in Fig. 1. Note that only the
Lindhard-Mermin model is shown
for the nonlocal results.

(d)

the molecule increases towards higher values. In the NL
case, however, the antisymmetric modes have resonance fre-
quency too high so that this only occurs when the emission
frequency is close to the bulk plasmon frequency. We have
also computed (not shown) the results for a larger nanoshell
with a=9 nm and »=10 nm, and observed large NL effects
as well for this larger shell with very small thickness.
Finally, we would like to study the NL effects on the
resonance frequency given in the local theory by Eq. (A3).
While (A3) [which includes (A4)] is an idealized result ob-
tained by using the Drude model (without damping) for the
metal shell, it has often been used as a guideline in various
experimental studies.’” In Fig. 4, we have plotted the solu-
tions from Eq. (A3) as a function of € (dashed lines). We

[N (a)

tangential dipole

103_'

have also recomputed these resonance frequencies for the
case of a realistic Ag-glass shell with damping as used in the
computations in Figs. 1-3 by using a numerical search pro-
gram for the peak positions in the imaginary part of the mul-
tipolar polarizability. The results are shown as black dots in
Fig. 4, which, surprisingly, compare very close (though not
identical) to those given by Eq. (A3). It is interesting to
recall that similar results for the surface plasmon resonance
frequency of a metal sphere (i.e., being independent of the
damping in the Drude model) has been reported previously
in the literature.2> Moreover, once the NL effects are in-
cluded, we see that both the antisymmetric and the symmet-
ric modes are blueshifted (as shown by the solid and dia-
mond curves) in their resonance frequencies, as observed

(b)

FIG. 3. Normalized decay rate
and frequency shift of an emitting
molecular dipole at 1 nm from the
same nanoshell for Fig. 1(a), plot-
ted as a function of the normalized
emission frequency of the mol-
ecule. Different lines denote re-
sults from different models in the
same way as in Fig. 1.

0.3 0.6
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FIG. 4. The two surface plasmon mode frequencies for a silver
nanoshell as in Fig. 1(a) evaluated by Drude model (filled circles),
hydrodynamic model (diamonds), and Lindhard-Mermin model
(solid) as functions of the multipolar order I. Also shown (dashed
lines) are the results for the ideal Drude case (without damping) as
obtained from Eq. (A3). The insets show the percentage deviation
(A) from the Drude model in the prediction of the plasmon reso-
nance frequencies by the NL models (solid for LM and dotted for
hydrodynamic) as a function of the multipolar order for (a) the
antisymmetric and (b) symmetric modes.

previously!® and in the above investigations. Again, we see
that both the hydrodynamic and LM models predict very
close results (within 10% from each other) for the blue-
shifted resonance frequencies (especially for the antisymmet-
ric modes). Furthermore, this NL deviation can be very sig-
nificant for higher multipolar modes, greater than 20% for
€=7. For the dipole case, however, it is found that the NL
effects amount to about 5% increase for w, and 12%-15%
for w_, which can be measurable. A detailed analysis of this
percentage deviation due to the NL effects is presented in the
inset. We should also mention that the present result for the
dipole case is in contrast with the one obtained previously
via density functional theory (DFT) calculation, in which
redshifted frequencies from Eq. (A4) were obtained,”* which
is likely due to the fact that the “spill-over effect” for the
electrons is completely excluded in the SCIB approximation.

PHYSICAL REVIEW B 73, 125438 (2006)

IV. CONCLUSION

In this work, we have applied the previously established
NL polarizability for a metallic shell'® to study the optical
response of these nanoshells. It has been shown that these
NL effects can become significant, for both hollow and filled
shells, when the size of the shells becomes very small or
when the shell thickness becomes very thin. Since current
experiments can fabricate these shells with thickness down
to about 1 nm, these NL effects can be important in these
experiments, which may lead to observation of deviations
from the Mie theory even in large (e.g., ~50-100 nm)
nanoshells. In addition, the NL effect will in general lower
the resonant absorption (extinction) efficiency for these
nanoshells (up to ~15% in our model study with Ag
nanoshells). Furthermore, it is seen that in most of our cal-
culations (Figs. 1-3), both the hydrodynamic and the LM
models give very similar results (within a few %), implying
that the single particle (e-h pair) excitation is not significant
under the conditions of these calculations when the lower
multipolar response from the nanoshell is considered. We
have seen the two models start to deviate from each other for
multipole €>15 or even for lower € if the damping were
small.

We should also remark that our present model is restricted
to the long wavelength limit. It is therefore of interest to note
that, in a very recent work, Moroz?® has formulated a full
electrodynamic theory using a transfer-matrix approach, in
which a spherical system of any number of layers can be
treated, with the possibility of including NL dielectric re-
sponse in any of the layers. It would be of interest to apply
Moroz’s theory to metallic nanoshells as studied in our
present work, and compared with the results we obtained
using the multipole polarizability. However, since the same
additional boundary condition (namely, the continuity of the
radial electric field) has been used in Moroz’s work, we ex-
pect results obtained from the Moroz theory should be simi-
lar to ours for such small-size nanoshells.
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APPENDIX

In the local limit Eq. (4) becomes

* ar .x(
Fley) =~ f otk lhoy)ak = T—F—=x. (A1)

0 (2€+ 1)y’

and one can show from the results in Egs. (2) and (3) that the
polarizability in Eq. (1) indeed reduces back to the familiar
one for a local response theory with the factor A, given by
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(e—e[€+e+1)]a* +€(1-¢8)e € +e(f+1)]p>!

T le—e)e= D+ 1)@ —(e€+ 0+ D)[e' €+ (€ + D]

Note that by using the undamped Drude model for e, the
poles of Eq. (A2) yield the following quadratic equation for
the plasmon resonance frequencies of the nanoshell:

[20%(e" + 1) +€(e" +3) + 1]y> = [(e" = 1)€(€ + 1)X>¢!
+ 02" +3) + 4+ 1y— €L+ DX - 1) =0,
(A3)

where V”;:(Z—i) is the €th-multipole resonance frequency

normalized to the bulk plasmon frequency of the metal, and
X=al/b is the ratio of the two radii. In the limit for a hollow

(A2)

metallic nanoshell, ¢’ =1 and the solution to (A3) leads back
to the well-known results for the plasmon frequencies in the
local theory as follows:®

VI+40(€+ DX (Ad)

1
2 2¢+ 1

The two modes w,, corresponds to the antisymmetric (+)
and symmetric (—) coupling between the sphere and cavity
modes, respectively, and can be accounted for by a plasmon
hybridization model.?
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