30 research outputs found

    The Spectral Sensitivity of Human Circadian Phase Resetting and Melatonin Suppression to Light Changes Dynamically with Light Duration

    Get PDF
    Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    The global retinoblastoma outcome study : a prospective, cluster-based analysis of 4064 patients from 149 countries

    Get PDF
    DATA SHARING : The study data will become available online once all analyses are complete.BACKGROUND : Retinoblastoma is the most common intraocular cancer worldwide. There is some evidence to suggest that major differences exist in treatment outcomes for children with retinoblastoma from different regions, but these differences have not been assessed on a global scale. We aimed to report 3-year outcomes for children with retinoblastoma globally and to investigate factors associated with survival. METHODS : We did a prospective cluster-based analysis of treatment-naive patients with retinoblastoma who were diagnosed between Jan 1, 2017, and Dec 31, 2017, then treated and followed up for 3 years. Patients were recruited from 260 specialised treatment centres worldwide. Data were obtained from participating centres on primary and additional treatments, duration of follow-up, metastasis, eye globe salvage, and survival outcome. We analysed time to death and time to enucleation with Cox regression models. FINDINGS : The cohort included 4064 children from 149 countries. The median age at diagnosis was 23·2 months (IQR 11·0–36·5). Extraocular tumour spread (cT4 of the cTNMH classification) at diagnosis was reported in five (0·8%) of 636 children from high-income countries, 55 (5·4%) of 1027 children from upper-middle-income countries, 342 (19·7%) of 1738 children from lower-middle-income countries, and 196 (42·9%) of 457 children from low-income countries. Enucleation surgery was available for all children and intravenous chemotherapy was available for 4014 (98·8%) of 4064 children. The 3-year survival rate was 99·5% (95% CI 98·8–100·0) for children from high-income countries, 91·2% (89·5–93·0) for children from upper-middle-income countries, 80·3% (78·3–82·3) for children from lower-middle-income countries, and 57·3% (52·1-63·0) for children from low-income countries. On analysis, independent factors for worse survival were residence in low-income countries compared to high-income countries (hazard ratio 16·67; 95% CI 4·76–50·00), cT4 advanced tumour compared to cT1 (8·98; 4·44–18·18), and older age at diagnosis in children up to 3 years (1·38 per year; 1·23–1·56). For children aged 3–7 years, the mortality risk decreased slightly (p=0·0104 for the change in slope). INTERPRETATION : This study, estimated to include approximately half of all new retinoblastoma cases worldwide in 2017, shows profound inequity in survival of children depending on the national income level of their country of residence. In high-income countries, death from retinoblastoma is rare, whereas in low-income countries estimated 3-year survival is just over 50%. Although essential treatments are available in nearly all countries, early diagnosis and treatment in low-income countries are key to improving survival outcomes.The Queen Elizabeth Diamond Jubilee Trust and the Wellcome Trust.https://www.thelancet.com/journals/langlo/homeam2023Paediatrics and Child Healt

    Temporal dynamics of ocular indicators of sleepiness across sleep restriction

    No full text
    The current study characterized the temporal dynamics of ocular indicators of sleepiness during extended sleep restriction. Ten male participants (mean age ± SD = 23.3 ± 1.6 years) underwent 40-hours of continuous wakefulness under constant routine (CR) conditions, and completed the Karolinska Sleepiness Scale (KSS) and a 10-minute auditory psychomotor vigilance task (aPVT) hourly. Waking electroencephalography (EEG) and ocular measures were recorded continuously throughout the CR. Infrared-reflectance oculography was used to collect the ocular measures positive and negative amplitude/velocity ratio, mean blink duration, the percentage of eye closure, and a composite score of sleepiness levels (Johns Drowsiness Scale). All ocular measures except blink duration, displayed homeostatic and circadian properties. Only circadian effects were detected in blink duration. Significant, phase-locked cross-correlations (p < 0.05) were detected between ocular measures and aPVT reaction time (RT), aPVT lapses, KSS, and EEG delta-theta (0.5-5.5 Hz), theta-alpha (5.0-9.0 Hz) and beta (13.0-20.0 Hz) activity. Receiver Operating Characteristic (ROC) curve analysis demonstrated reasonable sensitivity and specificity of ocular measures in correctly classifying aPVT lapses above individual baseline thresholds (initial 16 h of wakefulness). Under conditions of sleep restriction, ocular indicators of sleepiness paralleled performance impairment and self-rated sleepiness levels, and demonstrated their potential to detect sleepiness-related attentional lapses. These findings, if reproduced in a larger sample, will have implications on the use of ocular based sleepiness-warning systems in operational settings

    Functional decoupling of melatonin suppression and circadian phase resetting in humans

    No full text
    Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9‐day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim‐light control (<3 lux; n = 6) or (ii) two 12‐min intermittent bright light pulses (IBL) separated by 36 min of darkness (∌9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim‐light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15‐min pulses with 1.0 h dim‐light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase‐delay shifts than the dim‐light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light‐induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other

    Functional decoupling of melatonin suppression and circadian phase resetting in humans

    No full text
    Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9‐day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim‐light control (<3 lux; n = 6) or (ii) two 12‐min intermittent bright light pulses (IBL) separated by 36 min of darkness (∌9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim‐light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15‐min pulses with 1.0 h dim‐light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase‐delay shifts than the dim‐light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light‐induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other

    The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration

    No full text
    Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambda max at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambda max was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.LIPI

    Age-related changes in circadian regulation of the human plasma lipidome

    No full text
    Abstract Aging alters the amplitude and phase of centrally regulated circadian rhythms. Here we evaluate whether peripheral circadian rhythmicity in the plasma lipidome is altered by aging through retrospective lipidomics analysis on plasma samples collected in 24 healthy individuals (9 females; mean ± SD age: 40.9 ± 18.2 years) including 12 younger (4 females, 23.5 ± 3.9 years) and 12 middle-aged older, (5 females, 58.3 ± 4.2 years) individuals every 3 h throughout a 27-h constant routine (CR) protocol, which allows separating evoked changes from endogenously generated oscillations in physiology. Cosinor regression shows circadian rhythmicity in 25% of lipids in both groups. On average, the older group has a ~14% lower amplitude and a ~2.1 h earlier acrophase of the lipid circadian rhythms (both, p ≀ 0.001). Additionally, more rhythmic circadian lipids have a significant linear component in addition to the sinusoidal across the 27-h CR in the older group (44/56) compared to the younger group (18/58, p < 0.0001). Results from individual-level data are consistent with group-average results. Results indicate that prevalence of endogenous circadian rhythms of the human plasma lipidome is preserved with healthy aging into middle-age, but significant changes in rhythmicity include a reduction in amplitude, earlier acrophase, and an altered temporal relationship between central and lipid rhythms
    corecore