7 research outputs found

    Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions

    No full text
    As a contribution to phase2 of the Air Quality Model Evaluation International Initiative (AQMEII), eight different simulations for the year 2010 were performed with WRF-Chem for the European domain. The four simulations using RADM2 gas-phase chemistry and the MADE/SORGAM aerosol module are analyzed in this paper. The simulations included different degrees of aerosolemeteorology feedback, ranging from no aerosol effects at all to the inclusion of the aerosol direct radiative effect as well as aerosol cloud interactions and the aerosol indirect effect. In addition, a modification of the RADM2 gas phase chemistry solver was tested. The yearly simulations allow characterizing the average impact of the consideration of feedback effects on meteorology and pollutant concentrations and an analysis of the seasonality. Pronounced feedback effects were found for the summer 2010 Russian wildfire episode, where the direct aerosol effect lowered the seasonal mean solar radiation by 20 W m3 and seasonal mean temperature by 0.25°. This might be considered as a lower limit as it must be taken into account that aerosol concentrations were generally underestimated by up to 50%. The high aerosol concentrations from the wildfires resulted in a 10%e30% decreased precipitation over Russia when aerosol cloud interactions were taken into account. The most pronounced and persistent feedback due to the indirect aerosol effect was found for regions with very low aerosol concentrations like the Atlantic and Northern Europe. The low aerosol concentrations in this area result in very low cloud droplet numbers between 5 and 100 droplets cm1 and a 50e70% lower cloud liquid water path. This leads to an increase in the downward solar radiation by almost 50%. Over Northern Scandinavia, this results in almost one degree higher mean temperatures during summer. In winter, the decreased liquid water path resulted in increased long-wave cooling and a decrease of the mean temperature by almost the same amount. Precipitation over the Atlantic Ocean was found to be enhanced by up to 30% when aerosol cloud interactions were taken into account. The inclusion of aerosol cloud interactions can reduce the bias or improve correlations of simulated precipitation for some episodes and regions. However, the domain and time averaged performance statistics do not indicate a general improvement when aerosol feedbacks are taken into account. Except for conditions with either very low or very high aerosol concentrations, the impact of aerosol feedbacks on pollutant distributions was found to be smaller than the effect of the choice of the chemistry module or wet deposition implementation.JRC.C.5-Air and Climat

    Sensitivity of feedback effects in CBMZ/MOSAIC chemical mechanism

    No full text
    To investigate the impact of the aerosol effects on meteorological variables and pollutant concentrations two simulations with the WRF-Chem model have been performed over Europe for year 2010. We have performed a baseline simulation without any feedback effects and a second simulation including the direct as well as the indirect aerosol effect. The paper describes the full configuration of the model, the simulation design, special impacts and evaluation. Although low aerosol particle concentrations are detected, the inclusion of the feedback effects results in an increase of solar radiation at the surface over cloudy areas (North-West, including the Atlantic) and decrease over more sunny locations (South-East). Aerosol effects produce an increase of the water vapor and decrease the planet boundary layer height over the whole domain except in the Sahara area, where the maximum particle concentrations are detected. Significant ozone concentrations are found over the Mediterranean area. Simulated feedback effects between aerosol concentrations and meteorological variables and on pollutant distributions strongly depend on the aerosol concentrations and the clouds. Further investigations are necessary with higher aerosol particle concentrations. WRF-Chem variables are evaluated using available hourly observations in terms of performance statistics. Standardized observations from the ENSEMBLE system web-interface were used. The research was developed under the second phase of Air Quality Model Evaluation International Initiative (AQMEII). WRF-Chem demonstrates its capability in capturing temporal and spatial variations of the major meteorological variables and pollutants, except the wind speed over complex terrain. The wind speed bias may affect the accuracy in the chemical predictions (NO2, SO2). The analysis of the correlations between simulated data sets and observational data sets indicates that the simulation with aerosol effects performs slightly better. These results indicate potential importance of the aerosol feedback effects and an urgent need to further improve the representations in current atmospheric models to reduce uncertainties at all scales.JRC.C.5-Air and Climat

    Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    No full text
    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model intercomparison, we used the bulk mass profiles of aerosol chemical species sampled over the locations of AERONET stations across Europe and North America to calculate the aerosol optical properties under a range of common assumptions for all models. Several simulations with parameters perturbed within a range of observed values are carried out for July 2010 and intercompared in order to infer the assumptions that have the largest impact on the calculated aerosol optical properties. We calculate that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. The uncertainty introduced by the choice of mixing state choice on the calculation of the asymmetry parameter is the order of 10%. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. It is thus recommended to focus further research on a more accurate representation of the aerosol mixing state in models, in order to have a less uncertain simulation of the related optical properties.JRC.H.2-Air and Climat

    Feedbacks between air pollution and weather, Part 1: Effects on weather

    No full text
    The meteorological predictions of fully coupled air-quality models running in “feedback” versus “no-feedback” simulations were compared against each other and observations as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the “no-feedback” mode, the aerosol direct and indirect effects were disabled, with the models reverting to either climatologies of aerosol properties, or a no-aerosol weather simulation. In the “feedback” mode, the model-generated aerosols were allowed to modify the radiative transfer and/or cloud formation parameterizations of the respective models. Annual simulations with and without feedbacks were conducted on domains over North America for the years 2006 and 2010, and over Europe for the year 2010. The incorporation of feedbacks was found to result in systematic changes to forecast predictions of meteorological variables, both in time and space, with the largest impacts occurring in the summer and near large sources of pollution. Models incorporating only the aerosol direct effect predicted feedback-induced reductions in temperature, surface downward and upward shortwave radiation, precipitation and PBL height, and increased upward shortwave radiation, in both Europe and North America. The feedback response of models incorporating both the aerosol direct and indirect effects varied across models, suggesting the details of implementation of the indirect effect have a large impact on model results, and hence should be a focus for future research. The feedback response of models incorporating both direct and indirect effects was also consistently larger in magnitude to that of models incorporating the direct effect alone, implying that the indirect effect may be the dominant process. Comparisons across modelling platforms suggested that direct and indirect effect feedbacks may often act in competition: the sign of residual changes associated with feedbacks often changed between those models incorporating the direct effect alone versus those incorporating both feedback processes. Model comparisons to observations for no-feedback and feedback implementations of the same model showed that differences in performance between models were larger than the performance changes associated with implementing feedbacks within a given model. However, feedback implementation was shown to result in improved forecasts of meteorological parameters such as the 2 m surface temperature and precipitation. These findings suggest that meteorological forecasts may be improved through the use of fully coupled feedback models, or through incorporation of improved climatologies of aerosol properties, the latter designed to include spatial, temporal and aerosol size and/or speciation variations.JRC.C.5-Air and Climat

    Feedbacks between air pollution and weather, part 2: Effects on chemistry

    No full text
    Fully-coupled air-quality models running in “feedback” and “no-feedback” configurations were compared against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the “no-feedback” mode, interactions between meteorology and chemistry through the aerosol direct and indirect effects were disabled, with the models reverting to climatologies of aerosol properties, or a no-aerosol weather simulation, while in the “feedback” mode, the model-generated aerosols were allowed to modify the models’ radiative transfer and/or cloud formation processes. Annual simulations with and without feedbacks were conducted for domains in North America for the years 2006 and 2010, and for Europe for the year 2010. Comparisons against observations via annual statistics show model-to-model variation in performance is greater than the within-model variation associated with feedbacks. However, during the summer and during intense 2 emission events such as the Russian forest fires of 2010, feedbacks have a significant impact on the chemical predictions of the models. The aerosol indirect effect was usually found to dominate feedbacks compared to the direct effect. The impacts of direct and indirect effects were often shown to be in competition, for predictions of ozone, particulate matter and other species. Feedbacks were shown to result in local and regional shifts of ozone-forming chemical regime, between NOx- and VOC-limited environments. Feedbacks were shown to have a substantial influence on biogenic hydrocarbon emissions and concentrations: North American simulations incorporating both feedbacks resulted in summer average isoprene concentration decreases of up to 10%, while European direct effect simulations during the Russian forest fire period resulted in grid average isoprene changes of -5 to +12.5%. The atmospheric transport and chemistry of large emitting sources such as plumes from forest fires and large cities were shown to be strongly impacted by the presence or absence of feedback mechanisms in the model simulations. Summertime model performance for ozone and other gases was improved through the inclusion of indirect effect feedbacks, while performance for particulate matter was degraded, suggesting that current parameterizations for in- and below cloud processes, once the cloud locations become more directly influenced by aerosols, may over- or under-predict the strength of these processes. Process parameterization-level comparisons of fully coupled feedback models are therefore recommended for future work, as well as further studies using these models for the simulations of large scale urban/industrial and/or forest fire plumes.JRC.C.5-Air and Climat

    Supporting the improvement of air quality management practices: the “FAIRMODE pilot” activity

    No full text
    This paper presents the first outcomes of the “FAIRMODE pilot” activity, aiming at improving the way in which air quality models are used in the frame of the European “Air Quality Directive”. Member States may use modelling, combined with measurements, to “assess” current levels of air quality and estimate future air quality under different scenarios. In case of current and potential exceedances of the Directive limit values, it is also requested that they “plan” and implement emission reductions measures to avoid future exceedances. In both “assessment” and “planning”, air quality models can and should be used; but to do so, the used modelling chain has to be fit-for-purpose and properly checked and verified. FAIRMODE has developed in the recent years a suite of methodologies and tools to check if emission inventories, model performance, source apportionment techniques and planning activities are fit-for-purpose. Within the “FAIRMODE pilot”, these tools are used and tested by regional/local authorities, with the two-fold objective of improving management practices at regional/local scale, and providing valuable feedback to the FAIRMODE community. Results and lessons learnt from this activity are presented in this paper, as a showcase that can potentially benefit other authorities in charge of air quality assessment and planning.JRC.C.5-Air and Climat

    Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    Get PDF
    Date of Acceptance: 12/12/2014 Copyright The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional coupled chemistry and meteorology models participated in a coordinated model evaluation exercise. Each group simulated the year 2010 for a domain covering either Europe or North America or both. Here were present an operational analysis of model performance with respect to key meteorological variables relevant for atmospheric chemistry processes and air quality. These parameters include temperature and wind speed at the surface and in the vertical profile, incoming solar radiation at the ground, precipitation, and planetary boundary layer heights. A similar analysis was performed during AQMEII phase 1 (Vautard etal., 2012) for offline air quality models not directly coupled to the meteorological model core as the model systems investigated here. Similar to phase 1, we found significant overpredictions of 10-m wind speeds by most models, more pronounced during night than during daytime. The seasonal evolution of temperature was well captured with monthly mean biases below 2K over all domains. Solar incoming radiation, precipitation and PBL heights, on the other hand, showed significant spread between models and observations suggesting that major challenges still remain in the simulation of meteorological parameters relevant for air quality and for chemistry-climate interactions at the regional scale.Peer reviewedFinal Published versio
    corecore