195 research outputs found

    MCAF1 and synergistic activation of the transcription of Epstein–Barr virus lytic genes by Rta and Zta

    Get PDF
    Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle. The two proteins often collaborate to activate the transcription of EBV lytic genes synergistically. This study demonstrates that Rta and Zta form a complex via an intermediary protein, MCAF1, on Zta response element (ZRE) in vitro. The interaction among these three proteins in P3HR1 cells is also verified via coimmunoprecipitation, CHIP analysis and confocal microscopy. The interaction between Rta and Zta in vitro depends on the region between amino acid 562 and 816 in MCAF1. In addition, overexpressing MCAF1 enhances and introducing MCAF1 siRNA into the cells markedly reduces the level of the synergistic activation in 293T cells. Moreover, the fact that the synergistic activation depends on ZRE but not on Rta response element (RRE) originates from the fact that Rta and Zta are capable of activating the BMRF1 promoter synergistically after an RRE but not ZREs in the promoter are mutated. The binding of Rta–MCAF1–Zta complex to ZRE but not RRE also explains why Rta and Zta do not use RRE to activate transcription synergistically. Importantly, this study elucidates the mechanism underlying synergistic activation, which is important to the lytic development of EBV

    CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the {\beta}-globin locus

    Get PDF
    The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the 3-dimensional folding of a 1 Mbp region of human chromosome 11 containing the {\beta}-globin genes by integrating looping interactions of the insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a polymer model of chromatin. We find that CTCF-mediated cell type specific interactions in erythroid cells are organized to favor contacts known to occur in vivo between the {\beta}-globin locus control region (LCR) and genes. In these cells, the modeled {\beta}-globin domain folds into a globule with the LCR and the active globin genes on the periphery. By contrast, in non-erythroid cells, the globule is less compact with few but dominant CTCF interactions driving the genes away from the LCR. This leads to a decrease in contact frequencies that can exceed 1000-fold depending on the stiffness of the chromatin and the exact positioning of the genes. Our findings show that an ensemble of CTCF contacts functionally affects spatial distances between control elements and target genes contributing to chromosomal organization required for transcription.Comment: Full article, including Supp. Mat., is available at Nucleic Acids Research, doi: 10.1093/nar/gks53

    Sequence analysis of the Epstein-Barr virus (EBV) BRLF1 gene in nasopharyngeal and gastric carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) has a biphasic infection cycle consisting of a latent and a lytic replicative phase. The product of immediate-early gene BRLF1, Rta, is able to disrupt the latency phase in epithelial cells and certain B-cell lines. The protein Rta is a frequent target of the EBV-induced cytotoxic T cell response. In spite of our good understanding of this protein, little is known for the gene polymorphism of BRLF1.</p> <p>Results</p> <p>BRLF1 gene was successfully amplified in 34 EBV-associated gastric carcinomas (EBVaGCs), 57 nasopharyngeal carcinomas (NPCs) and 28 throat washings (TWs) samples from healthy donors followed by PCR-direct sequencing. Fourteen loci were found to be affected by amino acid changes, 17 loci by silent nucleotide changes. According to the phylogenetic tree, 5 distinct subtypes of BRLF1 were identified, and 2 subtypes BR1-A and BR1-C were detected in 42.9% (51/119), 42.0% (50/119) of samples, respectively. The distribution of these 2 subtypes among 3 types of specimens was significantly different. The subtype BR1-A preferentially existed in healthy donors, while BR1-C was seen more in biopsies of NPC. A silent mutation A/G was detected in all the isolates. Among 3 functional domains, the dimerization domain of Rta showed a stably conserved sequence, while DNA binding and transactivation domains were detected to have multiple mutations. Three of 16 CTL epitopes, NAA, QKE and ERP, were affected by amino acid changes. Epitope ERP was relatively conserved; epitopes NAA and QKE harbored more mutations.</p> <p>Conclusions</p> <p>This first detailed investigation of sequence variations in BRLF1 gene has identified 5 distinct subtypes. Two subtypes BR1-A and BR1-C are the dominant genotypes of BRLF1. The subtype BR1-C is more frequent in NPCs, while BR1-A preferentially presents in healthy donors. BR1-C may be associated with the tumorigenesis of NPC.</p

    BZLF1, an Epstein–Barr virus immediate–early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    Get PDF
    AbstractWe have previously demonstrated that the Epstein–Barr virus immediate–early BZLF1 protein interacts with, and is inhibited by, the NF-κB family member p65. However, the effects of BZLF1 on NF-κB activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-κB-responsive genes, ICAM-1 and IκB-α. BZLF1 also reduced the constitutive level of IκB-α protein in HeLa and A549 cells, and increased the amount of nuclear NF-κB to a similar extent as tumor necrosis factor-alpha (TNF-α) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-κB, BZLF1 did not induce binding of NF-κB to NF-κB responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-α treatment induced NF-κB binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-κB also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of IκB-α, decreased expression of IκB-α protein, and subsequent translocation of NF-κB to the nucleus. This nuclear translocation of NF-κB may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection

    The role of transcription factories-mediated interchromosomal contacts in the organization of nuclear architecture

    Get PDF
    Using numerical simulations, we investigate the underlying physical effects responsible for the overall organization of chromosomal territories in interphase nuclei. In particular, we address the following three questions: (i) why are chromosomal territories with relatively high transcriptional activity on average, closer to the centre of cell's nucleus than those with the lower activity? (ii) Why are actively transcribed genes usually located at the periphery of their chromosomal territories? (iii) Why are pair-wise contacts between active and inactive genes less frequent than those involving only active or only inactive genes? We show that transcription factories-mediated contacts between active genes belonging to different chromosomal territories are instrumental for all these features of nuclear organization to emerge spontaneously due to entropic effects arising when chromatin fibres are highly crowded

    H2A.Z-Mediated Localization of Genes at the Nuclear Periphery Confers Epigenetic Memory of Previous Transcriptional State

    Get PDF
    Many genes are recruited to the nuclear periphery upon transcriptional activation. The mechanism and functional significance of this recruitment is unclear. We find that recruitment of the yeast INO1 and GAL1 genes to the nuclear periphery is rapid and independent of transcription. Surprisingly, these genes remain at the periphery for generations after they are repressed. Localization at the nuclear periphery serves as a form of memory of recent transcriptional activation, promoting reactivation. Previously expressed GAL1 at the nuclear periphery is activated much more rapidly than long-term repressed GAL1 in the nucleoplasm, even after six generations of repression. Localization of INO1 at the nuclear periphery is necessary and sufficient to promote more rapid activation. This form of transcriptional memory is chromatin based; the histone variant H2A.Z is incorporated into nucleosomes within the recently repressed INO1 promoter and is specifically required for rapid reactivation of both INO1 and GAL1. Furthermore, H2A.Z is required to retain INO1 at the nuclear periphery after repression. Therefore, H2A.Z-mediated localization of recently repressed genes at the nuclear periphery represents an epigenetic state that confers memory of transcriptional activation and promotes reactivation

    Rapid Transcriptional Pulsing Dynamics of High Expressing Retroviral Transgenes in Embryonic Stem Cells

    Get PDF
    Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES) cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells

    Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template

    Get PDF
    The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1–2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130–220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5–3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock–induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization

    Targeted Deficiency of the Transcriptional Activator Hnf1α Alters Subnuclear Positioning of Its Genomic Targets

    Get PDF
    DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary β-cells and hepatocytes freshly isolated from mice lacking Hnf1α, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3). We show that in Hnf1a−/− cells inactive endogenous Hnf1α-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1α-targets in Hnf1a−/− cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease
    corecore