10 research outputs found

    Improved Detection of Foreign Bodies on Radiographs Using X-ray Dark-Field and Phase-Contrast Imaging

    Get PDF
    Purpose: The aim of this study was to investigate whether the detection of foreign bodies can be improved using dark-field and phase-contrast radiography compared with conventional (transmission) radiographs. Materials and Methods: Experiments were performed using ex vivo pig paws, which were prepared with differently sized foreign bodies of metal, wood, and glass (n = 10 each). Paws without foreign bodies served as controls (n = 30). All images were acquired using an experimental grating-based large object radiography system. Five blinded readers (second- to fourth-year radiology residents) were asked to assess the presence or absence of any foreign body. Sensitivity and specificity for the detection of metal, wood, glass, and any foreign body were calculated and compared using McNemar test and generalized linear mixed models. Results: Sensitivity for the detection of metal foreign bodies was 100% for all readers and image combinations. The sensitivity for the detection of wooden foreign bodies increased from 2% for transmission images to 78% when dark-field images were added (P < 0.0001). For glass foreign bodies, sensitivity increased from 84% for transmission images to 96% when adding phase-contrast images (P = 0.041). Sensitivity for the detection of any foreign body was 91% when transmission, dark-field, and phase-contrast images were viewed simultaneously, compared with 62% for transmission images alone (P < 0.0001). Specificity was 99% to 100% across all readers and radiography modalities. Conclusions: Adding dark-field images substantially improves the detection of wooden foreign bodies compared with the analysis of conventional (transmission) radiographs alone. Detection of glass foreign bodies was moderately improved when adding phase-contrast images

    First proof-of-concept evaluation of the FUSION-X-US-II prototype for the performance of automated breast ultrasound in healthy volunteers

    No full text
    Purpose!#!The FUSION-X-US-II prototype was developed to combine 3D-automated breast ultrasound (ABUS) and digital breast tomosynthesis in a single device without decompressing the breast. We evaluated the technical function, feasibility of the examination workflow, image quality, breast tissue coverage and patient comfort of the ABUS device of the new prototype.!##!Methods!#!In this prospective feasibility study, the FUSION-X-US-II prototype was used to perform ABUS in 30 healthy volunteers without history of breast cancer. The ABUS images of the prototype were interpreted by a physician with specialization in breast diagnostics. Any detected lesions were measured and classified using BI-RADS!##!Results!#!One hundred and six scans were performed (61 × CC, 23 × ML, 22 × MLO) in 60 breasts. Image acquisition and processing by the prototype was fast and accurate. Breast coverage by ABUS was approximately 90.8%. Sixteen breast lesions (all benign, classified as BIRADS!##!Conclusion!#!The FUSION-X-US-II prototype allows a rapid ABUS scan with mostly high patient comfort. Technical developments resulted in an improvement of quality and coverage compared to previous prototype versions. The results are encouraging for a test of the prototype in a clinical setting in combination with tomosynthesis

    Initial clinical results with a fusion prototype for mammography and three-dimensional ultrasound with a standard mammography system and a standard ultrasound probe

    No full text
    Background Combinations *Equal contributors. of different imaging techniques in fusion devices appear to be associated with improvements in diagnostic assessment. Purpose The aim of this study was to test the feasibility of using an automated standard three-dimensional (3D) ultrasound (US) device fused with standard mammography for the first time in breast cancer patients. Material and Methods Digital mammograms and 3D automated US images were obtained in 23 patients with highly suspicious breast lesions. A recently developed fusion machine consisting of an ABVS 3D US transducer from an Acuson S2000 machine and a conventional Mammomat Inspiration device (both Siemens Healthcare GmbH, Erlangen, Germany) were used for the purpose. The feasibility of the examinations, imaging coverage, and patients' experience of the procedure were examined. Results In 15 out of 19 patients, the region of interest (ROI) with the tumor marked in the mammogram was visible on US. The examination was experienced positively by the patients, with no unexpected pain or injury. The examination was time-saving and well tolerated. Conclusion In conclusion, we have shown initial clinical feasibility of an US/radiography fusion prototype with good localization and evaluation of the ROIs. The combined examination was well tolerated. The simultaneous evaluation with mammography and US imaging may be able to improve detection and reduce examiner-related variability

    Evaluation of the FUSION-X-US-II prototype to combine automated breast ultrasound and tomosynthesis

    No full text
    Objective!#!The FUSION-X-US-II prototype was developed to combine 3D automated breast ultrasound (ABUS) and digital breast tomosynthesis in a single device. We evaluated the performance of ABUS and tomosynthesis in a single examination in a clinical setting.!##!Methods!#!In this prospective feasibility study, digital breast tomosynthesis and ABUS were performed using the FUSION-X-US-II prototype without any change of the breast position in patients referred for clarification of breast lesions with an indication for tomosynthesis. The tomosynthesis and ABUS images of the prototype were interpreted independently from the clinical standard by a breast diagnostics specialist. Any detected lesion was classified using BI-RADS® scores, and results of the standard clinical routine workup (gold standard) were compared to the result of the separate evaluation of the prototype images. Image quality was rated subjectively and coverage of the breast was measured.!##!Results!#!One hundred one patients received both ABUS and tomosynthesis using the prototype. The duration of the additional ABUS acquisition was 40 to 60 s. Breast coverage by ABUS was approximately 80.0%. ABUS image quality was rated as diagnostically useful in 86 of 101 cases (85.1%). Thirty-three of 34 malignant breast lesions (97.1%) were identified using the prototype.!##!Conclusion!#!The FUSION-X-US-II prototype allows a fast ABUS scan in combination with digital breast tomosynthesis in a single device integrated in the clinical workflow. Malignant breast lesions can be localized accurately with direct correlation of ABUS and tomosynthesis images. The FUSION system shows the potential to improve breast cancer screening in the future after further technical improvements.!##!Key points!#!• The FUSION-X-US-II prototype allows the combination of automated breast ultrasound and digital breast tomosynthesis in a single device without decompression of the breast. • Image quality and coverage of ABUS are sufficient to accurately detect malignant breast lesions. • If tomosynthesis and ABUS should become part of breast cancer screening, the combination of both techniques in one device could offer practical and logistic advantages. To evaluate a potential benefit of a combination of ABUS and tomosynthesis in screening-like settings, further studies are needed

    Supplemental material for Initial clinical results with a fusion prototype for mammography and three-dimensional ultrasound with a standard mammography system and a standard ultrasound probe

    No full text
    <p>Supplemental material for Initial clinical results with a fusion prototype for mammography and three-dimensional ultrasound with a standard mammography system and a standard ultrasound probe by Julius Emons, Marius Wunderle, Arndt Hartmann, Marcus Radicke, Claudia Rauh, Michael Uder, Paul Gass , Peter A Fasching, Hanna Langemann, Matthias W Beckmann, Rüdiger Schulz-Wendtland and Sebastian M Jud in Acta Radiologica</p

    Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement

    No full text
    corecore