225 research outputs found

    Small angle x-ray scattering with edge-illumination

    Get PDF
    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond

    Increased material differentiation through multi-contrast x-ray imaging: a preliminary evaluation of potential applications to the detection of threat materials

    Get PDF
    Most material discrimination in security inspections is based on dual-energy x-ray imaging, which enables the determination of a material's effective atomic number (Z eff) as well as electron density and its consequent classification as organic or inorganic. Recently phase-based "dark-field" x-ray imaging approaches have emerged that are sensitive to complementary features of a material, namely its unresolved microstructure. It can therefore be speculated that their inclusion in the security-based imaging could enhance material discrimination, for example of materials with similar electron densities and Z eff but different microstructures. In this paper, we present a preliminary evaluation of the advantages that such a combination could bear. Utilising an energy-resolved detector for a phase-based dark-field technique provides dual-energy attenuation and dark-field images simultaneously. In addition, since we use a method based on attenuating x-ray masks to generate the dark-field images, a fifth (attenuation) image at a much higher photon energy is obtained by exploiting the x-rays transmitted through the highly absorbing mask septa. In a first test, a threat material is imaged against a non-threat one, and we show how their discrimination based on maximising their relative contrast through linear combinations of two and five imaging channels leads to an improvement in the latter case. We then present a second example to show how the method can be extended to discrimination against more than one non-threat material, obtaining similar results. Albeit admittedly preliminary, these results indicate that significant margins of improvement in material discrimination are available by including additional x-ray contrasts in the scanning process

    Two-dimensional ultra-small angle X-ray scattering with grating interferometry

    Full text link
    It was recently established that the pixel-wise ultra-small angle x-ray distribution can be retrieved with grating interferometry. However, in these one dimensional approaches the contrast was limited to the direction orthogonal to the structure of the line gratings. Here, we demonstrate that sensitivity in two contrast directions can be achieved by using two pairs of crossed line gratings and by adapting scan procedures and data analysis accordingly. We demonstrate the retrieval of two-dimensional scattering distributions with grating interferometry, thus overcoming the previously reported limit of seven obtainable, complementary contrasts. In addition, we give further evidence for the superiority of the signal-to-noise ratio for the dark-field contrast, if a deconvolution-based instead of the standard analysis is utilized

    Increased material differentiation through multi-contrast x-ray imaging: a preliminary evaluation of potential applications to the detection of threat materials

    Full text link
    Most material discrimination in security inspections is based on dual-energy x-ray imaging, which enables the determination of a material's effective atomic number (Zeff) as well as electron density and its consequent classification as organic or inorganic. Recently phase-based "dark-field" x-ray imaging approaches have emerged that are sensitive to complementary features of a material, namely its unresolved microstructure. It can therefore be speculated that their inclusion in the security-based imaging could enhance material discrimination, for example of materials with similar electron densities and Z eff but different microstructures. In this paper, we present a preliminary evaluation of the advantages that such a combination could bear. Utilising an energy-resolved detector for a phase-based dark-field technique provides dual-energy attenuation and dark-field images simultaneously. In addition, since we use a method based on attenuating x-ray masks to generate the dark-field images, a fifth (attenuation) image at a much higher photon energy is obtained by exploiting the x-rays transmitted through the highly absorbing mask septa. In a first test, a threat material is imaged against a non-threat one, and we show how their discrimination based on maximising their relative contrast through linear combinations of two and five imaging channels leads to an improvement in the latter case. We then present a second example to show how the method can be extended to discrimination against more than one non-threat material, obtaining similar results. Albeit admittedly preliminary, these results indicate that significant margins of improvement in material discrimination are available by including additional x-ray contrasts in the scanning process

    Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    Get PDF
    Defaults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal systems is a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with neither contrast agent nor a destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is a crucial tool for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries. In particular, it should be an optimal tool to resolve the entangled relationship between VN and neuronal system.Comment: 15 pages, 6 figure

    A tilted grating interferometer for full vector field differential x-ray phase contrast tomography

    Full text link
    We report on a setup for differential x-ray phase-contrast imaging and tomography, that measures the full 2D phase-gradient information. The setup uses a simple one-dimensional x-ray grating interferometer, in which the grating structures of the interferometer are oriented at a tilt angle with respect to the sample rotation axis. In such a configuration, the differential phase images from opposing tomography projections can be combined to yield both components of the gradient vector. We show how the refractive index distribution as well as its x, y, and z gradient components can be reconstructed directly from the recorded projection data. The method can equally well be applied at conventional x-ray tube sources, to analyzer based x-ray imaging or neutron imaging. It is demonstrated with measurements of an x-ray phantom and a rat brain using synchrotron radiation

    Direct access to the moments of scattering distributions in x-ray imaging

    Get PDF
    The scattering signal obtained by phase-sensitive x-ray imaging methods provides complementary information about the sample on a scale smaller than the utilised pixels, which offers the potential for dose reduction by increasing pixel sizes. Deconvolution-based data analysis provides multiple scattering contrasts but suffers from time consuming data processing. Here, we propose a moment-based analysis that provides equivalent scattering contrasts while speeding up data analysis by almost three orders of magnitude. The availability of rapid data processing will be essential for applications that require instantaneous results such as medical diagnostics, production monitoring and security screening. Further, we experimentally demonstrate that the additional scattering information provided by the moments with an order of higher than two can be retrieved without increasing exposure time or dose
    • …
    corecore