28 research outputs found
Predation risk triggers copepod small-scale behavior in the Baltic Sea
Predators not only have direct impact on biomass but also indirect, non-consumptive effects on the behavior their prey organisms. A characteristic response of zooplankton in aquatic ecosystems is predator avoidance by diel vertical migration (DVM), a behavior which is well studied on the population level. A wide range of behavioral diversity and plasticity has been observed both between- as well as within-species and, hence, investigating predator–prey interactions at the individual level seems therefore essential for a better understanding of zooplankton dynamics. Here we applied an underwater imaging instrument, the video plankton recorder (VPR), which allows the non-invasive investigation of individual, diel adaptive behavior of zooplankton in response to predators in the natural oceanic environment, providing a finely resolved and continuous documentation of the organisms’ vertical distribution. Combing observations of copepod individuals observed with the VPR and hydroacoustic estimates of predatory fish biomass, we here show (i) a small-scale DVM of ovigerous Pseudocalanus acuspes females in response to its main predators, (ii) in-situ observations of a direct short-term reaction of the prey to the arrival of the predator and (iii) in-situ evidence of pronounced individual variation in this adaptive behavior with potentially strong effects on individual performance and ecosystem functioning
ACEseq – allele specific copy number estimation from whole genome sequencing
ACEseq is a computational tool for allele-specific copy number estimation in tumor genomes based on whole genome sequencing. In contrast to other tools it features GC-bias correction, unique replication timing-bias correction and integration of structural variant (SV) breakpoints for improved genome segmentation. ACEseq clearly outperforms widely used state-of-the art methods, provides a fully automated estimation of tumor cell content and ploidy, and additionally computes homologous recombination deficiency scores.</jats:p
Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing
DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control
Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas
The genomic and transcriptional landscape of primary central nervous system lymphoma
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Haemostaseological Changes of VWF and FVIII during Pregnancy and the Oestrus Cycle in a Porcine Model of Von Willebrand Disease
Pregnancy and the oestrus cycle are challenging for female patients suffering from von Willebrand disease (VWD). Therefore, our study aimed to investigate the changes in von Willebrand factor (VWF) and factor VIII (FVIII) during pregnancy and the oestrus cycle in our porcine model of von Willebrand disease compared with the wild-type. Plasma analyses regarding primary hemostasis, secondary hemostasis, and VWF multimers, as well as immunohistochemistry analyses of VWF in the uterus and ovary, were performed. For levels of VWF and FVIII activities, significant elevations were seen in the last trimester. Primary hemostasis improved towards the end of pregnancy. In the oestrus cycle, significantly lower VWF values can be seen in the immunohistochemistry of the ovaries during the oestrus, while values were highest in the metoestrus. VWF multimer patterns in pigs were similar to the ones in human VWD patients. In summary, the course of VWF and FVIII during pregnancy and the oestrus cycle in porcine VWD were investigated for the first time. The porcine model seems to be suitable for haemostaseological studies on VWD. This provides an advantage for investigating reproduction-related bleeding and understanding the underlying mechanisms of post-partum hemorrhage or miscarriage in women with VWD
Recommended from our members
Exploring the Factors Affecting the Solubility of Chitosan in Water
We explore the role of crystallinity and inter- or intramolecular forces in chitosan for its solubility in water and demonstrate the expansion of its solubility to a wider pH range. Due to its semicrystalline nature, derived mainly from inter- and intramolecular hydrogen bonds, chitosan is water-soluble only at pH < 6. In acidic conditions, its amino groups can be partially protonated resulting in repulsion between positively charged macrochains, thereby allowing diffusion of water molecules and subsequent solvation of macromolecules. We show that chemical disruption of chitosan crystallinity by partial re-acetylation or physical disruption caused by the addition of urea and guanidine hydrochloride broadens the pH-solubility range for this biopolymer