130 research outputs found

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Options for early breast cancer follow-up in primary and secondary care : a systematic review

    Get PDF
    Background Both incidence of breast cancer and survival have increased in recent years and there is a need to review follow up strategies. This study aims to assess the evidence for benefits of follow-up in different settings for women who have had treatment for early breast cancer. Method A systematic review to identify key criteria for follow up and then address research questions. Key criteria were: 1) Risk of second breast cancer over time - incidence compared to general population. 2) Incidence and method of detection of local recurrence and second ipsi and contra-lateral breast cancer. 3) Level 1–4 evidence of the benefits of hospital or alternative setting follow-up for survival and well-being. Data sources to identify criteria were MEDLINE, EMBASE, AMED, CINAHL, PSYCHINFO, ZETOC, Health Management Information Consortium, Science Direct. For the systematic review to address research questions searches were performed using MEDLINE (2011). Studies included were population studies using cancer registry data for incidence of new cancers, cohort studies with long term follow up for recurrence and detection of new primaries and RCTs not restricted to special populations for trials of alternative follow up and lifestyle interventions. Results Women who have had breast cancer have an increased risk of a second primary breast cancer for at least 20 years compared to the general population. Mammographically detected local recurrences or those detected by women themselves gave better survival than those detected by clinical examination. Follow up in alternative settings to the specialist clinic is acceptable to women but trials are underpowered for survival. Conclusions Long term support, surveillance mammography and fast access to medical treatment at point of need may be better than hospital based surveillance limited to five years but further large, randomised controlled trials are needed

    MMP-9 gene variants increase the risk for non-atopic asthma in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atopic and non-atopic wheezing may be caused by different etiologies: while eosinophils are more important in atopic asthmatic wheezers, neutrophils are predominantly found in BAL samples of young children with wheezing. Both neutrophils as well as eosinophils may secrete matrix metalloproteinase 9 (MMP-9). Considering that MMP-9 plays an important role in airway wall thickening and airway inflammation, it may influence the development of obstructive airway phenotypes in children. In the present study we investigated whether genetic variations in <it>MMP-9 </it>influence the development of different forms of childhood asthma.</p> <p>Methods</p> <p>Genotyping of four HapMap derived tagging SNPs in the <it>MMP-9 </it>gene was performed using MALDI-TOF MS in three cross sectional study populations of German children (age 9-11; N = 4,264) phenotyped for asthma and atopic diseases according to ISAAC standard procedures. Effects of single SNPs and haplotypes were studied using SAS 9.1.3 and Haploview.</p> <p>Results</p> <p>SNP rs2664538 significantly increased the risk for non-atopic wheezing (OR 2.12, 95%CI 1.40-3.21, p < 0.001) and non-atopic asthma (OR 1.66, 95%CI 1.12-2.46, p = 0.011). Furthermore, the minor allele of rs3918241 may be associated with decreased expiratory flow measurements in non-atopic children. No significant effects on the development of atopy or total serum IgE levels were observed.</p> <p>Conclusions</p> <p>Our results have shown that homozygocity for <it>MMP-9 </it>variants increase the risk to develop non-atopic forms of asthma and wheezing, which may be explained by a functional role of MMP-9 in airway remodeling. These results suggest that different wheezing disorders in childhood are affected differently by genetic alterations.</p

    A New Method for Isolation of Interstitial Fluid from Human Solid Tumors Applied to Proteomic Analysis of Ovarian Carcinoma Tissue

    Get PDF
    Major efforts have been invested in the identification of cancer biomarkers in plasma, but the extraordinary dynamic range in protein composition, and the dilution of disease specific proteins make discovery in plasma challenging. Focus is shifting towards using proximal fluids for biomarker discovery, but methods to verify the isolated sample's origin are missing. We therefore aimed to develop a technique to search for potential candidate proteins in the proximal proteome, i.e. in the tumor interstitial fluid, since the biomarkers are likely to be excreted or derive from the tumor microenvironment. Since tumor interstitial fluid is not readily accessible, we applied a centrifugation method developed in experimental animals and asked whether interstitial fluid from human tissue could be isolated, using ovarian carcinoma as a model. Exposure of extirpated tissue to 106 g enabled tumor fluid isolation. The fluid was verified as interstitial by an isolated fluid:plasma ratio not significantly different from 1.0 for both creatinine and Na+, two substances predominantly present in interstitial fluid. The isolated fluid had a colloid osmotic pressure 79% of that in plasma, suggesting that there was some sieving of proteins at the capillary wall. Using a proteomic approach we detected 769 proteins in the isolated interstitial fluid, sixfold higher than in patient plasma. We conclude that the isolated fluid represents undiluted interstitial fluid and thus a subproteome with high concentration of locally secreted proteins that may be detected in plasma for diagnostic, therapeutic and prognostic monitoring by targeted methods

    Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1

    Get PDF
    SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions

    Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function

    Get PDF
    The P-SlINO::SlINO-GFP transgene continues to be expressed after fertilization during the onset of fruit development. A-C: Ovules from P-SlINO::SlINO-GFP plants. D, E: Ovules from control plants. Images A (confocal) and B (DIC overlaid with GFP channel) show expression in the outer cell layer in an ovule post-anthesis. C-E are images of the surface cells of the integument of ovules taken from 3–4 mm fruits. C and D are images taken on an epifluorescence microscope (Axioplan) using a Chroma GFP filter set 41017 (Chroma, Bellows Falls, VT). E is a dark-field image of the same ovule in D. These images show expression is present in developing fruit. Scale bar in B represents 20 μm, scale bar in E represents 20 μm in C-E. (TIF 4435 kb

    Nuclear localised more sulphur accumulation1 epigenetically regulates sulphur homeostasis in Arabidopsis thaliana

    Get PDF
    Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over- accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation
    corecore