1	
I	
_	

1	Title:
2	
3 4	Denitrification and Nitrous Oxide Emissions from Riparian Forests Soils Exposed to Prolonged Nitrogen Runoff
4 5	i i olongeu i viti ogen Kunon
5 6	
0 7	
8	Paper type: General article
9	
10	
11	
12	Running Head: Denitrification in forests
13	
14	
15	
16	
17	AUTHORS:
18	
19	Sami Ullah ^{1, 2} * and Gladis M. Zinati ¹
20	
21	1. Department of Plant Biology and Pathology
22	Rutgers University, Foran Hall, 59 Dudley Road,
23	New Brunswick, NJ 08901, USA
24	
25	2. Current Address: Global Environmental and Climate Change Centre,
26	McGill University, 610 Burnside Hall
27	805 Rue Sherbrooke St. W, Montreal, Quebec H3A 2K6, Canada
28	
29	*Author for correspondence (email: sami.ullah@mcgill.ca)
30	phone: +1-514-398-4957; fax: +1-514-398-7437)
31	
32	Key words: Chronic nitrogen loading, Denitrification, Nitrous oxide emissions, Nitrogen
33	saturation; Nursery runoff, Riparian wetlands, Phosphorus loading, Water quality
34	

1 ABSTRACT

2 Compared to upland forests, riparian forest soils have greater potential to remove nitrate 3 (NO₃) from agricultural run-off through denitrification. It is unclear, however, whether 4 prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of 5 denitrification and its end products. This research assesses the rate of denitrification and 6 nitrous oxide (N₂O) emissions from riparian forest soils exposed to prolonged nutrient 7 run-off from plant nurseries and compares these to similar forest soils not exposed to 8 nutrient run-off. Nursery run-off also contains high levels of phosphate (PO_4). Since there 9 are conflicting reports on the impact of PO_4 on the activity of denitrifying microbes, the 10 impact of PO₄ on such activity was also investigated. Bulk and intact soil cores were 11 collected from N-exposed and non-exposed forests to determine denitrification and N₂O 12 emission rates, whereas denitrification potential was determined using soil slurries. 13 Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold 14 when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 µg NO₃-N g⁻¹ soil, respectively. Net N₂O emissions were 1.5 and 1.7 15 16 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μ g NO₃-N g⁻¹ soil amendment rates, respectively. Similarly, denitrification potential 17 increased 17 times in response to addition of 15 µg NO₃-N g⁻¹ in soil slurries. The 18 addition of PO₄ (5 µg PO₄-P g⁻¹) to soil slurries and intact cores did not affect 19 20 denitrification rates. These observations suggest that prolonged N loading did not affect 21 the denitrification potential of the riparian forest soils; however, it did result in higher 22 N₂O emissions compared to emission rates from non-exposed forests.

23

1 Introduction

2 Extensive agricultural activities accompanied by the use of nitrogen (N) fertilizer 3 have resulted in higher concentration of nitrate (NO₃) in surface waters in the U.S. 4 (Vitousek et al. 1997; Mitsch et al. 2001; Turner and Rabalais 2003). Among agricultural 5 activities, ornamental plant nurseries use more fertilizer than is used to cultivate row 6 crops in the U.S. (Colangelo and Brand 2001). Both NO_3 and ammonium (NH_4) are 7 highly prone to leaching from soilless growing media in plant nurseries under intensive irrigation regimes (Harris et al. 1997). Loss of mineral N from nurseries occurs 8 9 intermittently after irrigation or heavy rainfall (Harris et al. 1997; Colangelo and Brand 10 2001). The N-laden runoff often flows across the nursery to finally reach bodies of water, 11 contributing to the increasing reactive N load of surface and groundwater resources of the 12 country (Galloway et al. 2004). Higher NO_3 concentration in the rivers of the U.S. is a 13 major cause of eutrophication in coastal waters (Turner and Rabalais 1994; Day et al. 2003). 15 Denitrification, or reduction of NO₃ to N₂O and N₂ gases, is one of the major microbial processes in riparian forest soils (Hunter and Faulkner 2001). It occurs under anaerobic conditions in which organic carbon is used as an energy source and NO_3 as the terminal electron acceptor by heterotrophic soil bacteria (Tiedje, 1982). Riparian forest

14

16 17 18 soils have greater potential to denitrify NO3 than surrounding agricultural lands (Lindau 19 20 et al. 1994; Delaune et al. 1996). Use and restoration of riparian forests as a nutrient 21 management tool for removing NO_3 from agricultural and urban runoff is highly 22 recommended to protect and improve water quality in the U.S. (Mitsch et al. 2001; Day et 23 al. 2003).

1	Although riparian soils denitrify NO_3 at higher rates due to saturated soil
2	conditions and greater quantities of microbially available carbon, NO ₃ content under
3	normal conditions can be limiting (Lowrance et al. 1995). Thus, an external source of
4	NO_3 is needed to maintain high denitrification rates (Ullah et al. 2005) in these soils.
5	Such loading of runoff NO3 into N-limited riparian forests markedly enhances
6	denitrification rates (DeLaune et al. 1996), but it is not clear whether chronic exposure to
7	higher NO ₃ runoff has a positive or negative impact on denitrfier activity in soils
8	(Smolander et al. 1994; Hanson et al. 1994a; Ettema et al. 1999). Bowden et al. (2004),
9	Compton et al. (2004), and Wallenstein et al. (2006), observed significantly reduced
10	microbial biomass carbon and activity in N-enriched temperate forest soils compared to
11	control plots. This suggests that prolonged exposure of natural ecosystems to N can
12	influence important microbial functions in soil. Discerning the effects of chronic NO ₃
13	loading on denitrifier activity in riparian forest soils is crucial to quantify the potential of
14	riparian buffers to remove NO ₃ . As denitrification is extremely variable both temporally
15	and spatially (Groffman et al. 1991), it would be useful to investigate the effects of
16	episodic higher NO ₃ loading, as occurs from plant nursery runoff after irrigation or
17	rainfall, on denitrification rates of riparian forest soils (Groffman, et al. 1991). Such
18	information would help to develop nutrient management strategies for agricultural runoff.
19	The relative amounts of N_2O and N_2 gases produced during denitrification in soils
20	(Skiba et al. 1998) depends mainly on soil moisture, available carbon substrate, and NO_3
21	concentration (Breitenbeck et al. 1980; Linn and Doran 1984; Skiba et al. 1998). Higher
22	soil moisture and available organic carbon substrate promote complete reduction of low
23	to moderate levels of NO ₃ to N_2 gas, thus reducing the net amount of N_2O produced

1	(Linn and Doran 1984; Ullah et al. 2005). Higher levels of soil NO ₃ , however, result in
2	higher net $N_2O:N_2$ gas emission ratios, since reduction of NO_3 compared to N_2O is more
3	energy efficient and is favored by denitrifiers (Breitenbeck et al. 1980; Ullah et al. 2005).
4	Thus, denitrification in riparian forest soils exposed to prolonged NO ₃ runoff may result
5	in higher net N_2O emissions (Fenn et al. 1998). N_2O is a 'greenhouse gas' that can induce
6	310 times more global warming than CO_2 on a mole-per-mole basis and thus can upset
7	the credits gained from atmospheric CO ₂ sequestration in these ecosystems (IPCC 1996;
8	Yu et al. 2004). Moreover, N_2O is also a major contributor in depleting stratospheric
9	ozone (IPCC 1996). Current efforts to sequester atmospheric CO ₂ into restored riparian
10	wetland soils may be jeopardized by increased N2O emissions from these same
11	ecosystems. There is an acute paucity of data on N_2O emissions from riparian forests in
12	the northeastern U.S. (Groffman et al. 2000a), particularly from those exposed to
13	prolonged NO ₃ loading. Lack of data on the dynamics of N_2O emissions from riparian
14	forests has hampered efforts to accurately measure and model N_2O emission factors from
15	riparian zones for nitrogen cycling budgeting on a landscape scale (Groffman et al.
16	2000a).
17	In addition to NO ₂ agricultural runoff also carries phosphorus (P) which as a

In addition to NO₃, agricultural runoff also carries phosphorus (P), which, as a pollutant, can affect water quality and other factors in aquatic ecosystems (Silvan et al. 2003; Sudareshwar et al. 2003). Since P is an integral part of the microbial biomass in soils, prolonged P loading into riparian forest soils may affect the activity of soil microbes, including denitrifiers (Silvan et al. 2003; Meyer et al. 2005). There are conflicting reports on the effect of soil P level on the activity of denitrifiers. Sudareshwar et al. (2003) observed a decrease in denitrification rates when coastal wetland soils were

1 amended with P compared to soils with limited P; alternatively, Federer and Klemedtsson 2 (1988) and White et al. (2001) did not observe any effect of additional P on denitrifer 3 activity in upland forest and Florida Everglade wetland soils, respectively. It would of 4 interest to know if prolonged P loading of riparian forest soils impacts denitrifier activity. 5 In this study, we compared the effect of additional NO_3 on denitrification and net 6 N_2O emission rates from riparian forest soils exposed to prolonged mineral N loading 7 from plant nurseries. In addition, the impact of phosphate amendments on denitrification 8 rates at selected sites was also evaluated. 9 **Material and Methods** 10 Study sites 11 Four riparian forest sites were identified in southern New Jersey in the upper Cohansey River watershed (located between 75° 5' to 75° 20' W longitude and 39° 22' to 12 39° 35' N latitude). Two of the sites, Loew forest (LF) and Centerton forest (CF), were 13 14 exposed to nutrient runoff from surrounding plant nurseries for a period of 10 years. The 15 other two sites, Natural forest (NF) and Harmoney forest (HF), are located within 0.5 and 16 3 miles of the LF site and did not receive runoff from surrounding nurseries or landscapes 17 for this period. As such, these sites are considered as non-exposed in terms of chronic 18 mineral N loading from the surrounding acreage. Atmospheric N deposition in New Jersey range from 3.6 to 7.8 kg N ha⁻¹ y⁻¹ (Dighton et al. 2004). This range of 19 20 atmospheric N deposition in the region is considered elevated due to increased fossil fuel 21 combustion and fertilizer production and use in the past 50 years (Fenn et al. 1998; 22 Venterea et al. 2003). This may have deleterious impacts on soil N cycling in riparian

forest soils in southern New Jersey, in addition to the nursery run-off N entering into
 some of the riparian buffers.

3 Runoff reaching the N-exposed sites arose mainly from frequent over-head 4 sprinkler irrigation (at least twice-weekly from May to September) and rainfall from 150 5 acres of container grown and field nursery crops (LF) or 200 acres of container grown 6 crops (CF). The runoff entered the LF site through a drainage PVC pipe and the CF site 7 through a drainage ditch. Four replicate samples of runoff water were analyzed for NO_3 8 concentration at both locations in May and June, 2005 using the Flow Injection Analyzer 9 at the Rutgers University Soil Analysis laboratory. The average NO₃ load of drainage 10 entering the LF site was 15.0 and 8.2 mg L⁻¹ while that entering the CF site was 3.0 and 11 12.5 mg NO₃ L⁻¹, which in some cases exceeded the EPA water quality standard of 10 mg 12 L⁻¹ (EPA 2004).

Due to lack of availability of analytical data on the extent and duration of run-off nitrate entering these sites, an indirect approach was adopted. Pools of N in soil and foliar litter were investigated for signs of prolonged nitrogen exposure and saturation. An increase in foliar nitrogen content, nitrification rates and NO₃ leaching from forests in response to chronic N loading are the established primary indicators of N saturation (Aber et al. 1989; Magill et al. 2000).

The soils in the four sites range in texture from silty clay loam to loamy sand. All supported mature forests, not used for commercial forestry, that were dominated by mature stands of hardwood tree species of white oak (*Quercus alba*), northern red oak (*Q. rubra*), red maple (*A. ruburum*), silver maple (*A. saccharinum*), willow oak (*Q. phellos*), pin oak (*Q. palustris*), and American holly (*Ilex opaca*). Other non-dominant tree species

1 in these forests are green ash (*Fraxinus pennsylvanica*), white ash (*F. americana*), yellow 2 popular (Liriodendron tulipifera), sweet gum (Liquidamber styraciflua), American elm 3 (Ulmus americana), and bitternut hickory (Carva cordiformis). The LF site was infested 4 with reeds (*Phragmites australis*), growing as a sub-canopy under the hardwood trees, 5 that were concentrated along the nursery runoff flow path within the site. The CF site had 6 relatively higher snag density and woody debris biomass than the other sites. Selected 7 physico-chemical properties of the four sites are shown in Table 1. Consistently higher 8 potential nitrification rates, % foliar N and soil mineral N, and lower C:N ratios in the N-9 exposed sites compared to the non-exposed sites shows that the LF and CF sites were 10 exposed to prolonged mineral N loading (Table 1). 11 Soil sampling Four replicate 1 m² sampling plots were randomly located at each site. Plots at the 12 13 LF and CF sites were located in forest areas inundated by the nursery runoff sheet flow. 14 To avoid edge effects on soil characteristics, the randomly placed plots were situated in a 15 line at least 16 m down the boundary of the surrounding land uses and the forest. Unusual 16 features such as hoof prints, small depressions, large surface debris, and other unusual 17 micro-features were avoided during sampling. 18 Soil cores and bulk soil samples used for determination of denitrification, net N_2O 19 emission rates, microbial biomass C and N and other relevant physico-chemical 20 properties were collected on May 19, 20, 30, and June 18, 2005 from the LF, NF, HF, and 21 CF sites respectively. To avoid high initial soil NO₃ concentration, cores from the LF and 22 CF sites were collected on dates when no nursery runoff was entering the sampling plots. 23 At each sampling plot, 9 intact soil cores (6 cm dia. x 10 cm length) were collected in

1	plastic liners (6 cm dia. x 15 cm length) using a slide hammer (AMS core sampler®,
2	American Falls, Idaho). The collected cores were capped at both ends. An additional soil
3	core (0-10 cm soil depth) was collected from each plot in bronze liners (6 cm dia. x 10
4	cm length) for determination of bulk density and moisture content. Finally, 4 soil cores
5	(0-10 cm soil depth) were collected and composited using a mud auger (4.4 cm dia.) for
6	analysis of physico-chemical properties, a potential denitrification enzyme assay, and
7	concentrations of nitrate and ammonium. The % water-filled pore space (WFPS) of all
8	the cores collected from the LF, NF, CF and HF sites was 100, 100, 80 and 83%,
9	respectively, at the time of sampling. The %WFPS of the soil samples were determined
10	according to Ullah et al. (2005). The intact cores and bulk soil samples were transferred
11	to the laboratory on ice and refrigerated until use.
12	Soil cores used for potential net N mineralization and nitrification rates were
13	collected from all sampling plots during the last week of October, 2005. Duplicate, intact

14 soil cores (10 cm long) were obtained as described above and transferred to the

15 laboratory on ice, where they were refrigerated until use.

16

Potential denitrification assay

Potential denitrification was determined using soil slurries according to Hunter and Faulkner (2001). Field moist soils (10 g dry-soil weight basis) were weighed into four 150 ml serum bottles from each bulk soil sample and were assigned randomly to one of the four treatments – unamended control, 5 μ g PO₄ g⁻¹ soil, 15 μ g NO₃-N g⁻¹ soil, and 15 μ g NO₃-N +5 ug PO₄ g⁻¹ soil in a factorial design. For each treatment 4 replicates were used. After weighing soils in serum bottles, 10 ml of PO₄ solution delivering 5 μ g PO₄ g⁻¹ soil (as KH₂PO₄) was added to 4 bottles each labeled as PO₄ only and PO₄ + NO₃.

1 The remaining 8 bottles received 10 ml of DI water. The bottles were closed with rubber 2 stoppers and shaken for 10 minutes to make slurry. After shaking, the rubber stoppers 3 were removed and the bottles were wrapped in aluminum foil and allowed to equilibrate for 48 hours. It was assumed that 48 hours duration would be sufficient to expose 4 5 microbes in the slurry to the added PO_4 for cellular incorporation, keeping in mind the 6 rapid turnover (in the order of hours) and assimilation of PO_4 by the phosphate 7 accumulating microbes in the soil (Meyer et al. 2005). 8 After 48 hours, 10 ml of a NO₃ solution (as KNO₃) was administered to 4 bottles 9 each labeled as NO₃ only and PO₄ + NO₃ treatments, while 10 ml DI water was added to 10 the remaining 8 bottles. Bottles were then capped using serum septa and purged with O₂-11 free N₂ gas for 25 minutes to induce anaerobic conditions. After purging, 10% of the 12 headspace was replaced with acetylene (C_2H_2) gas that had been purified in concentrated 13 H₂SO₄ solution and DI water sequentially for the removal of acetone. After the addition 14 of C₂H₂, the bottles were wrapped in aluminum foil and shaken continuously for 6 hours 15 on a reciprocating shaker at room temperature (appx. 22 °C). Headspace gas samples (9 16 ml) were collected from the bottles after 0 and 6 hours using a hypodermic needle 17 attached to a syringe. The gas samples were injected into 5 ml Becton Dickinson 18 Vacutainers to maintain a high internal pressure to avoid any diffusion of outside air into 19 the Vacutainers. The gas samples were analyzed within one week of collection on a 20 Shimadzu GC-14A gas chromatograph equipped with an electron capture detector. The 21 rate of N_2O production, determined from the rate of accumulation of N_2O in the 22 headspaces of the bottles, was corrected for dissolved N₂O in the slurry using the Bunsen 23 absorption coefficient of 0.54 (Tiedje 1982). Denitrification potential was converted to an area basis (while accounting for differences in bulk density of the four sites) and is
 reported as μg N m⁻² h⁻¹.

3 Denitrification and net N₂O emission rates from soil cores

4 Denitrification and net N₂O emission rates were determined on intact soil cores 5 brought to room temperature and incubated for 24 hours. The purpose was to quantify the 6 response of these soils in terms of denitrification and net N_2O emissions within the first 7 24 hours of NO₃ loading. The 24 hours duration was chosen to simulate a hydrologic 8 retention time of 24 hours of the loaded NO_3 into the riparian soils due to runoff. The 9 9 cores collected from each sampling plot were randomly assigned to groups of three cores 10 each. One set was randomly selected for measuring net N₂O flux while the remaining 2 11 sets were prepared for measuring denitrification rate with and without an added PO_4 12 amendment The set to receive additional PO₄ was amended with a 5 ml phosphorus solution to deliver 5 μ g PO₄ g⁻¹ soil, while the remaining cores received 5 ml DI water. 13 All sets of cores were covered and equilibrated for 48 hours to give sufficient time for 14 15 microbes in the PO_4 amended treatment to be exposed to the added PO_4 . After 48 hours, a 5 ml solution containing 0, 30, or 60 μ g NO₃-N g⁻¹ was administered to one core within 16 17 each set. A syringe was used to evenly distribute the NO_3 solution to the surface of the 18 core. The WFPS of each core was brought to 100% by adding DI water to the cores 19 where WFPS was less than 100%. This was done to simulate a sudden increase in NO₃ 20 loading of the riparian soil under saturated soil conditions, delivered by nursery runoff after an irrigation or rainfall event. After amendment with NO₃, purified C₂H₂ gas was 21 22 injected into the two sets of cores selected for determination of denitrification rate. 23 Approximately 10 ml C₂H₂ gas was injected directly into the cores at the liner and soil

1	column interface in small aliquots using a syringe fitted with a 16 gauge 10-cm long
2	needle. This was done to ensure a rapid and even diffusion of C_2H_2 gas into the soil pore
3	space. The purpose of injection of C_2H_2 at the liner and soil column interface instead of
4	the middle of the columns was to avoid disturbance to the soil column. After C_2H_2
5	injection, the cores were sealed with airtight seals fitted with rubber septa for gas
6	sampling. The headspace in the closed column was replaced with an additional 5 ml $C_2 H_2$
7	gas to achieve an approximate 10% C_2H_2 gas concentration in the column. The last set of
8	cores selected for net N_2O emission were sealed with airtight caps without the addition of
9	C_2H_2 gas. Soil cores incubated with and without additional C_2H_2 gas were used to
10	estimate denitrification and net N_2O emission rates. Gas samples, collected after 0 and 24
11	hours of incubation from the closed column headspace using a syringe, were analyzed on
12	a gas chromatograph for concentration of N_2O as described in the previous section. The
13	rates of denitrification and net N ₂ O emissions determined are reported as $\mu g N m^{-2} h^{-1}$.

14

Microbial biomass carbon and nitrogen

15 Bulk soil samples collected from the four sites were used for the determination of 16 microbial biomass C according to Voroney et al. (1993). Four replicate (25 g field-moist 17 soils) soil samples were fumigated in a desiccator for 24 hours to kill and lyse microbial 18 cells in the soil. The fumigated and a similar set of non fumigated soils (4 replicates each 19 for each forest site) were extracted with 0.5 M K₂SO₄ solution for soluble organic carbon 20 (C) concentration at 1:8 soil to K_2SO_4 solution ratio. The extracts were filtered through 21 No. 42 Whatman filter paper into 20 ml vials and analyzed using a Shimadzu TOC 22 analyzer for determination of soluble organic C. Before analysis, samples were diluted by 23 a factor of 4 to reduce the concentration of K₂SO₄ salts in the extracted samples because

1 salt passing through the TOC analyzer can clog the beaded column. The amount of 2 microbial biomass C was calculated as the difference of soluble organic C between fumigated and unfumigated soils divided it by a correction factor ($K_{EC} = 0.40$) to account 3 4 for the efficiency of fumigation-extraction of the microbial C. Microbial biomass N was 5 determined using the chloroform fumigation-incubation technique according to Voroney 6 and Paul (1984). Four replicate (25g field-moist soils) samples from each forest site were 7 fumigated in a desiccator for 24 hours as described above. The fumigated samples were inoculated with fresh soil for 10 days at room temperature ((~22 °C) to allow 8 9 mineralization of organic N in the sample including that in the lysed microbial cells. A 10 similar set of non fumigated samples (4 replicates for each forest site) were also 11 incubated with the fumigated samples. After the 10 days incubation, the samples were 12 extracted with 2M KCL for mineral N concentration determination. Microbial biomass N 13 was calculated as the difference in mineral N in fumigated and non fumigated soils 14 divided by a correction factor ($K_{EN} = 0.30$) to account for the efficiency of microbial N extraction. Both the microbial biomass carbon and nitrogen are reported as $\mu g C$ or N g⁻¹ 15 dry soil. 16

17 Selected physico-chemical properties of soils

Gravimetric soil moisture content, bulk density, total porosity, water-filled pore
space, soil particle size distribution, soil pH, mineral nitrogen, water-soluble organic
carbon, and total soil C and N were determined on bulk soil samples according to Ullah
et al. (2005). Total soil P content was determined using Mehlich 3 method of soil
extractable nutrients.

1 Potential net N mineralization and nitrification rates

2 One of the duplicate soil cores from each sampling plot collected in October, 3 2005 was homogenized thoroughly by hand, and a 5 g sub-sample was extracted with 2 4 M KCL solution for the determination of initial mineral N concentration. The WFPS of 5 the remaining soil cores was adjusted to 100% by adding DI water to the top of the cores. 6 The cores were covered with a loose cap to allow for air exchange and to reduce the loss of water vapor and were then placed in a box to incubate in the dark at 20 °C for 28 days 7 8 (Hart et al. 1994). These cores were incubated at 100% WFPS to simulate conditions 9 similar to the cores incubated for the determination of denitrification rates. Following the 10 incubation period, the cores were removed from the plastic liners and homogenized 11 thoroughly by hand. A 5 g sub-sample of the homogenized soil was extracted with 2 M 12 KCL solution for the determination of mineral N. Net nitrogen mineralization and 13 nitrification rates were calculated from the difference in the amount of initial and final 14 mineral N content (Hart et al. 1994). Net nitrogen mineralization and nitrification rates, are reported as ng N g⁻¹ dry soil h⁻¹. 15

16 Foliar Nitrogen

Eight replicate samples of fresh leaf litter were collected from each 1 m² plots at the four forest sites on October 30, 2005. The samples were oven-dried at 65 °C for 5 days. The dried samples were pulverized and analyzed on a LECO N analyzer using a thermoconductivity detector for the determination of foliar N, which is reported as % N on dried mass basis (Table 1).

22

2	All data were analyzed using SAS V-8.3 (SAS Inc. 2000). Within-site differences
3	in denitrification and net N_2O emission rates of soils amended at 0, 30, and 60 $\mu g \ NO_3 \ g^{\text{-1}}$
4	soil were done using analysis of variance (ANOVA) using the General Linear Model.
5	Fisher's protected LSD was used for post hoc comparisons at $\alpha = 0.05$. Similarly,
6	ANOVA was also used for between-site comparison of denitrification , net N_2O emission
7	and N mineralization and nitrification rates. To elucidate any effect of PO ₄ amendment
8	on denitrification rate, a two-sample T test was done using the pooled variance technique
9	at $\alpha = 0.05$. A multiple regression model using the backward-selection option was used
10	to identify predictor variables that significantly affect denitrification and net N_2O
11	emission rates from the selected sites. The data was analyzed to meet the normal
12	distribution assumption of ANOVA and regression using the Proc Univariate procedure
13	at Shapiro-Wilk significance of $p > 0.05$. Pearson correlation coefficients between
14	various microbial and physio-chemical characteristics of the sites were determined using
15	SAS.
16	Results
17	Potential denitrification assay
18	The potential denitrification rate of riparian soils either exposed or not exposed to
19	mineral N loading from nursery runoff increased significantly ($p < 0.05$) when amended

20 with $15\mu g \text{ NO}_3 \text{ g}^{-1}$ soil alone or in combination with PO₄ (Figure 1). The addition of PO₄

- 21 had no effect on potential denitrification in soils from any of the sites. A significant
- 22 response of these soils to added NO₃ in terms of increased denitrification depicts a

limitation of this process by available NO₃ even after prolonged exposure of the LF and
 CF sites to mineral N loading.

3 Denitrification and net N₂O emission rates from soil cores

When intact soil cores were amended with 30 μ g NO₃ g⁻¹ soil, samples from all 4 5 the sites responded with a significant increase in denitrification rate compared to non 6 amended soils (Table 2), showing that denitrification in these sites is limited by NO_3 in a 7 manner similar to that found in Figure 1. The denitrification rates observed among sites amended with 30 µg NO₃ g⁻¹, however, did not significantly differ (p > 0.05). Although 8 denitrification rate was further increased in soils amended with 60 μ g NO₃ g⁻¹, this was 9 not significant except in soil from the NF site. The addition of 5 μ g PO₄ g⁻¹ soil made 10 11 little difference in denitrification rate (Table 3

The addition of 30 μ g NO₃ g⁻¹ soil to soil cores collected from all riparian sites 12 13 increased net N₂O emissions by an average of 15-fold compared to the unamended 14 treatment (Table 4). However, N₂O emission rates averaged from soils collected from the N-exposed sites (22.5 μ g N m⁻² h⁻¹) were 1.5 times those of the non-exposed sites (14.5 15 μ g N m⁻² h⁻¹) at 30 μ g NO₃ g⁻¹ amendment level. With 60 μ g g⁻¹ additional NO₃, net N₂O 16 emissions increased significantly (p < 0.05) compared to the 30 µg NO₃ g⁻¹ treatment in 17 18 soils from the N-exposed sites. Moreover, N₂O emission rates from the N exposed sites 19 were on average 1.6 times higher (p < 0.05) than N₂O emission rates from the non-20 exposed sites (Table 4).

Soluble organic carbon (SOC) was a key predictor variable of denitrification
(multiple linear regression) in soils from the four riparian forest sites when amended with
30 and 60 µg NO₃ g⁻¹ soil, respectively (Figures 2 and 3). SOC accounted for 30% of the

1	variability in denitrification rate (denitrification in $\mu g N m^{-2} h^{-1} = 294 + 0.58$ SOC in μg
2	C g ⁻¹ soil) for the 30 μ g NO ₃ g ⁻¹ treatment, whereas this factor accounted for only 55% of
3	the variability at the 60 μ g NO ₃ g ⁻¹ amendment level (denitrification in μ g N m ⁻² h ⁻¹ = 199
4	+ 1.70 SOC in ug C g^{-1} soil). SOC controls denitrification rates in these sites once the
5	process is not limited by NO ₃ availability. Unlike denitrification, no single strong
6	predictor variable of N_2O flux from these forests was identified due to greater variability
7	of the flux rates and the complex interactions of the predictor variables in regulating the
8	flux- a condition encountered by other researchers (Smith et al. 1995; Groffman, et al.
9	2000b). The combination of various predictor variables accounted for 93%, 48% and
10	83% variability in net N ₂ O emissions at zero, 30 and 60 μ g NO ₃ g ⁻¹ amendment levels,
11	respectively. Among these variables, microbial biomass nitrogen, total soil nitrogen and
12	NH_4 concentration correlated positively with net $\mathrm{N}_2\mathrm{O}$ emissions in the regression models.
13	This suggests that an increases in different pools of soil nitrogen due to chronic N loading
14	can increase N ₂ O emissions during denitrification.

15 Microbial biomass carbon and nitrogen

Compared to soils from sites exposed to nursery runoff, relatively higher soil C:N ratio and microbial biomass C in the soils from sites not exposed to nursery runoff (Table 1) indicates a higher pool of labile C available to denitrifiers, resulting in higher denitrification and lower net N₂O emission rate. Microbial biomass carbon, SOC, and total soil C correlated significantly with denitrification rate, whereas microbial biomass N, total soil N, NH₄, and C:N ratios correlated significantly with net N₂O emission (Table 5).

23 Potential net N mineralization and nitrification rates

Potential net nitrogen mineralization rates were not significantly different in soils collected from the four riparian forest sites (p > 0.05). Potential net nitrification rate, however, differed significantly (p < 0.05) between N-exposed and non-exposed sites (Table 1). The N-exposed sites had 8.4 times higher nitrification rates than those observed in the non-exposed sites. Total foliar nitrogen content was 1.2 times higher in leaf litter collected from sample plots on the N-exposed sites than litter collected from non-exposed sites (Table 1).

8 **Discussion**

9 Denitrification rate in soils collected from riparian forest sites either exposed or 10 not exposed to mineral N loading, increased significantly in all the sites when amended 11 with NO₃. This observation clearly demonstrates that denitrification in soils from these 12 sites was limited by NO_3 (Figure 1: Tables 2 and 3) and that prolonged mineral N loading 13 did not affect the activity of denitrifying microbes in the soils collected from exposed 14 sites (LF and CF sites). Hanson et al. (1994a and 1994b) also observed higher 15 denitrification rates in a N-enriched riparian forest in Rhode Island, and they concluded 16 that higher denitrification capacity is a key process that moderates the effects of chronic mineral N enrichment. Average lower soil NO₃ (Table 1) concentration (2.9 μ g N g⁻¹ 17 18 soil) in the N-exposed sites in spite of chronic run-off input support the observation that 19 NO₃ removal capacity of these sites is not exhausted by chronic N loading. In a study in 20 Europe, lower NO_3 concentrations in groundwater beneath a riparian forest receiving 21 chronic N run-off was ascribed to higher denitrification rates (Hefting and de Klein 22 1998), which is in agreement with our results.

The observed rates of denitrification (Tables 2 and 3) in soils from all sites were within the range of denitrification rates in riparian forest soils reported elsewhere in literature (Lowrance et al. 1995; Jordan et al. 1998; Hefting et al. 1998 and 2003). However, caution needs to be exercised when extrapolating denitrification rates of the current study to bigger spatial and temporal scales, since these rates were determined under controlled laboratory conditions of soil NO₃, temperature and moisture and thus may not reflect actual field conditions.

8 As the addition of NO₃ to soil cores increased denitrification, the rate limiting 9 factor shifted from NO₃ availability to available organic C substrate, especially at 60 μ g NO₃ g⁻¹ soil treatment. For example, soil from the non-exposed NF site with significantly 10 11 higher SOC and total soil C (Table 1) denitrified more NO₃ than the rest of the sites at 60 μ g NO₃ g⁻¹ amendment level. This apparent control of denitrification rates by available C 12 13 substrate was found significant using the multiple regression and Pearson's correlation 14 analyses (Figures 2 and 3; Table 5). Significant control of denitrification rates by 15 available C substrate in riparian wetlands has been reported elsewhere in the literature 16 (Lindau, et al. 1994; Lowrance, et al. 1995; DeLaune et al. 1996; Hefting et al. 2003). 17 Microbial biomass C also correlated significantly with denitrification rates (Table 18 5) supporting the argument that available C exerts a regulatory control on denitrification rate, as biomass C is one of the sources of the labile C pools in soil. However, it is 19 20 noteworthy that the microbial biomass carbon content (Table 1) of the N-exposed sites 21 was significantly lower than those of the non-exposed sites (p < 0.05). Lower microbial 22 biomass C in the N-exposed sites is thought to be due to the negative effects of 23 prolonged N exposure. This finding is in agreement with those of Compton et al. (2004),

1 Bowden et al. (2004) and Wallenstein et al. (2006), who observed lower microbial 2 biomass carbon and activity in N-enriched temperate forest soils in the northeastern U.S. 3 Wallenstein et al. (2006) also reported a 59 and 52% reduction in microbial biomass C 4 and substrate-induced respiration, respectively, in soils of a N-saturated temperate forest 5 compared to a non-saturated forest in New England. Ettema et al. (1999) observed similar 6 effects of N enrichment on biomass C and activity in riparian forest soils in Georgia. 7 These authors feared that the denitrifying microbes in riparian forests may be threatened 8 by the cumulative negative effects of N saturation. Although we found significantly 9 lower soil microbial biomass C in the N-exposed sites, the current study did not observe 10 significant differences in denitrification rates among the N-exposed and non-exposed 11 sites, showing that riparian forests can sustain a high and persistent capacity to denitrify 12 NO_3 even if exposed to prolonged mineral N loading (Hanson et al. 1994b). Given the 13 limited temporal coverage of this experiment under optimum laboratory soil moisture and 14 temperature regimes, further temporally intensive field denitrification assessment studies 15 of these sites is recommended to validate the current observations. 16 We found no effect of PO₄ addition on denitrifier activity (Figure 1; Tables 2 and

We found no effect of PO4 addition on dentrifier activity (Figure 1; Tables 2 and 3), which is commensurate with the results of Federer and Klemedtsson (1988) and White and Reddy (1999). However, our findings are in contrast to those of Sudareshwar et al. (2003) who reported that P-enrichment of coastal wetland soils reduced denitrification potential compared to similar non-enriched soils. None of these studies were conducted on riparian forest soils. Our data suggests that P input to riparian forests from agricultural run-off will not affect denitrifier activity.

1	Even though denitrification rate in soils amended with additional NO_3 (30 and 60
2	μ g NO ₃ g ⁻¹) varied little among sites (Table 2), net N ₂ O emission rates were higher from
3	soils collected from the N-exposed sites (Table 4). It appears that these differences were a
4	result of prolonged exposure of the N-exposed sites to nursery run-off. This result is
5	consistent with the findings of Hefting et al (2003) who reported that N_2O emissions from
6	riparian forests receiving chronic N loads were higher compared to emissions from
7	riparian grasslands, even though denitrification rates of the two ecosystems were similar.
8	Higher soil N pools, greater potential nitrification rates, and lower soil and microbial
9	biomass C:N ratios (Table 1) resulting from prolonged N loading in the N-exposed soils
10	appeared to have reduced soil N_2O reductase activity, which eventually led to higher N_2O
11	emissions compared to emissions from the non-exposed sites. Moreover, prolonged N
12	exposure resulted in higher nitrification rates in the N-exposed sites (Magill et al. 2000)
13	compared to the non-exposed sites. This observation is similar to those in other studies
14	that evaluated N_2O emissions from temperate forest soils after N fertilization in the
15	northeastern U.S. (Bowden et al. 1991; Brumme and Beese 1992; Sitaula and Bakken,
16	1993; Barnard et al. 2005).

In findings similar to ours, Hanson et al. (1994b) reported significantly higher microbial biomass N in a N-enriched riparian forest soil compared to a non-enriched site (Hanson et al. 1994b), suggesting that prolonged exposure of riparian forests to mineral N is saturating different soil N pools. The soil N saturation phenomena, including increases in microbial biomass N and net nitrification rates, may be resulting in relatively higher N₂O emissions from riparian forests when loaded with mineral N from agricultural run-off. Although a significant relationship (r = 0.50; p < 0.04) found between microbial

1	biomass N and N ₂ O emissions from cores amended with 60 μ g NO ₃ -N g ⁻¹ soil (Table 5),
2	this does not likely represent a cause and effect relationship. Further studies are needed to
3	define the relationship between an increase in microbial biomass N and higher N_2O
4	emissions in riparian forest soils.
5	In this study, microbial biomass C was significantly lower ($p < 0.05$) in the N-
6	exposed sites (Table 1) compared to the non-exposed sites, which is in agreement with
7	the findings of Ettema et al. (1999), Bowden et al. (2004), and Compton et al. (2004).
8	Concomitant decrease in biomass C with increasing biomass N and increased net
9	nitrification rates due to prolonged exposure of riparian forests to mineral N loading
10	strongly suggests that episodic, high levels of NO3 input into N-saturated riparian forest
11	soil leads to higher net N ₂ O emissions.
12	Soil texture affects N_2O flux from soils by influencing gas diffusion rates in the
13	soil profile (Weitz et al. 2001). Compared to coarse-textured soils, fine-textured soils
14	limit gas diffusion rates, thus enhancing the probability that N_2O is reduced to N_2 gas by
15	
	soil denitrifying organisms (Weitz et al. 2001). Although the N-exposed sites (CF and
16	soil denitrifying organisms (Weitz et al. 2001). Although the N-exposed sites (CF and LF) were higher in clay (Table 1), net N_2O emissions from these soils exceeded those of
16 17	
	LF) were higher in clay (Table 1), net N ₂ O emissions from these soils exceeded those of
17	LF) were higher in clay (Table 1), net N_2O emissions from these soils exceeded those of sites not exposed to additional mineral N loading, supporting our finding that that
17 18	LF) were higher in clay (Table 1), net N ₂ O emissions from these soils exceeded those of sites not exposed to additional mineral N loading, supporting our finding that that prolonged exposure of riparian forest soils to mineral N may have reduced N ₂ O reductase
17 18 19	LF) were higher in clay (Table 1), net N ₂ O emissions from these soils exceeded those of sites not exposed to additional mineral N loading, supporting our finding that that prolonged exposure of riparian forest soils to mineral N may have reduced N ₂ O reductase activity. Soil water can also reduce N ₂ O diffusion by approximately 4 orders of

 $\,$ soil texture on N_2O emissions from the four sites. We recommend further studies to

 $\begin{array}{ll} 1 & \mbox{elucidate the interactive effects of soil moisture and texture on N_2O emission from soils}\\ 2 & \mbox{to better understand the fate of N_2O in soils.} \end{array}$

3	In our study, N_2O emission rates in treatments that did not receive additional NO_3
4	were within the range or lower than the N_2O emission rates reported by other studies
5	from temperate forests in the northeastern U.S. (Bowden et al. 1990, 1991, 2000; Hafner
6	and Groffman 2005). However, when additional NO ₃ is loaded into riparian forests,
7	which are considered as 'hotspots' of denitrification and N_2O production (Groffman et al.
8	2000a), N_2O emission rate increases by a factor of at least 12 or more even under
9	saturated soil conditions. The increase in N_2O emissions due to NO_3 loading needs to be
10	considered when calculating N_2O emission factors for riparian forests by concerned
11	agencies (Groffman et al. 2000a) like the Intergovernmental Panel on Climate Change
12	and the U.S. Department of Energy-National Commission on Carbon Sequestration.
13	In summary, the results of this research show that the denitrification potential of
14	riparian forest soils is not compromised after chronic exposure to mineral N run-off for
15	10 years. Moreover, addition of PO_4 does not seem to affect the activity of denitrifying
16	microbes in these soils. Although riparian soils can substantially contribute to the
17	reduction of NO ₃ loading into water bodies in watersheds dominated by plant nurseries,
18	these forests will emit relatively more N_2O into the atmosphere compared to similar soils
19	not exposed to chronic mineral N run-off. This should be accounted for at the landscape
20	scale within the wetlands potential carbon-sequestration context. We recommend that
21	riparian forests be considered as an integral component in developing strategies for NO ₃
22	removal from nursery run-off in New Jersey and other similar eco-zones in the country.
23	Acknowledgments

1	We extend thanks to Ray Blew, Frank Loews, and Douglas Mahaffy for permitting us
2	access to the riparian forest sites located within their nursery operation areas for soil and
3	water samples collection. We also thank Jim Johnson of the Rutgers Cooperative
4	Extension, Cumberland County office, New Jersey for his help in the identification of
5	riparian sites and information on the management history of riparian buffers in the
6	Cohansey River watershed. We also thank Dr. Ann Gould, Department of Plant Biology
7	and Pathology, Rutgers University, New Jersey for thoroughly reviewing and editing this
8	manuscript for grammatical and syntax error correction. The authors are grateful to the
9	New Jersey Nursery and Landscaping Association, the New Jersey Agricultural
10	Experiment Station, and the Horticultural Programmatic Enhancement Grants at Rutgers
11	University for funding this project.
10	

1 **References**

2 Aber, J. D. Nadlehoffer, K. J. Steudler, P. J. and Melillo J. M. 1989. Nitrogen saturation 3 in northern forest ecosystems. BioScience 39: 378-393. 4 5 Barnard, R., Leadley, P. W. and Hungate, B. A. 2005. Global change, nitrification and 6 denitrification: A review. Global Biogeochem. Cycles 19, GB1007, doi: 10.1029/2004 7 GB002282. 8 9 Bowden, R. D., Melillo, J. M., Stedudler, P. A., and Aber, J. D. 1991. Effects of nitrogen 10 additions on annual nitrous oxide fluxes from temperate forest soils in the Northeastern 11 United States. J. Geophys. Res. 96: 9321-9328. 12 13 Bowden, R. D., Stedudler, P. A., Melillo, J. M., and Aber, J. D. 1990. Annual nitrous 14 oxide fluxes from temperate forest soils in the northeastern United States. J. Geophys. 15 Res. 95: 13,997-14,005 16 Bowden, R. D., Davidson, E., Savage, K., Arabia, C., and Steudler, P. A. 2004. Chronic 17 18 nitrogen additions reduce total soil respiration and microbial respiration in temperate 19 forest soils at the Harvard forest. Forest. Ecol. Manage. 196: 43-56. 20 21 Breitenbeck, G. A., Blackmer, A. M., and Bremner, J. M. 1980. Effects of different 22 nitrogen fertilizers on emissions of nitrous oxide from soils. J. Geophys. Res. Lett. 7: 85-23 88. 24 25 Brumme, R. and Beese, F. 1992. Effects of liming and nitrogen fertilization on emissions 26 of CO₂ and N₂O from a temperate forest. J. Geophys. Res. 97: 12851-12858. 27 28 Clough, T. J., Sherlock, R. R., and Rolston, D. E. 2005. A review of the movement and 29 fate of N2O in the subsoil. Nutr. Cycl. Agroecosys. 72: 3-11. 30 Colangelo, D. J. and Brand, M. H. 2001. Nitrate leaching beneath a containerized nursery 31 crop receiving trickle or overhead irrigation. J. Environ. Qual. 30: 1564-1574. 32 Compton, J. E., Watrud, L. S., Porteous, L. A., and DeGrood, S. 2004. Response of soil 33 microbial biomass and community composition to chronic nitrogen additions at Harvard 34 forest. Forest. Ecol. Manage. 196: 143-158. 35 Day, J. W. Jr., Arancibia, A. Y., Mitsch, W. J., Laura, A. L., Day, J. N., Ko, J. Y., Lane, R. R., Lindsay, J., and Lomeli, D. Z. 2003. Using ecotechnology to address water quality 36 37 and wetland habitat loss problems in the Mississippi basin: a hierarchical approach. 38 Biotechnology Advance 22: 135-159. 39 40 DeLaune R.D., Boar, R. R., Lindau, C. W., and Kleiss, B. A. 1996. Denitrification in 41 bottomland hardwood wetland soils of the Cache River. Wetlands 16: 309-320. 42

- 1 Dighton, J., Tuininga, A. R., Gray, D. M., Huskins, R. E., and Belton, T. 2004. Impacts
- of atmospheric N deposition on New Jersey pine barrens forest soils and communities of
 ectomycorrhizea. Forest. Ecol. Manage. 201: 131-144.
- 4
- 5 EPA. 2004. Edition of the Drinking Water Standards and Health Advisories. EPA 822-R6 04-005, Office of Water, US Environmental Protection Agency, Washington DC.
- 7 Ettema, C.H., Lowrance, R., and Coleman, D. C. 1999. Riparian soil response to surface
- 8 nitrogen input: Temporal changes in denitrification, labile and microbial C and N pools,
- 9 and bacterial and fungal respiration. Soil Biol. Biochem. 31:1609–1624.
- 10 Federer, C. A. and Klemedtsson, I. 1988. Some factors limiting denitrification in slurries
- 11 of acid forest soils. Scandinavian J. Forest Res. 3: 425-435.
- 12
- 13 Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W.,
- Lemly, A. D., McNulty, S. G., Ryan, D. F., and Stottlemyer, R. 1998. Nitrogen excess in north American ecosystems: predisposing factors, ecosystem responses and management
- 16 strategies. Ecol. Appl. 8: 706-733.
- 17
- 18 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
- 19 Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D.
- 20 M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorosmarty, C. J. 2004.
- 21 Nitrogen cycle: past, present, and future. Biogeochemistry 70: 153-226.
- 22
- 23 Groffman, P.M., Axelrod, E. A., Lemunyon, J. L., and Sullivan, W. M. 1991.
- Denitrification in grass and forest vegetated filter strips. J. Environ. Qual. 20: 671-674.
- Groffman, P. M, Gold, A. J., and Addy, K. 2000a. Nitrous oxide production in riparian
 zones and its importance to national emission inventories. Chemosphere-Global Change
 Science 2: 291-299.
- 29
- 30 Groffman, P. M., Brumme, R., Butterbach-Bahl, K., Dobbie, K. E., Mosier, A. R., Ojima,
- 31 D., Papen, H., Parton, W. J., Smith, K. A., and Wagner-Riddle, C. 2000b. Evaluating
- annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochem. Cycles 14 (4):
 1061-1070, GB001227.
- 34
- Hafner, D. S. and Groffman, P. M. 2005. Soil nitrogen cycling under litter and coarse
 woody debris in a mixed forest in New York State. Soil Bio.and Biochem. 37: 21592162.
- Hanson, G.C., Groffman, P. M. and Gold, A. J. 1994a. Symptoms of nitrogen saturation
 in a riparian wetland. Ecol. Appl. 4:750-756.
- 40 Hanson G. C., Groffman, P. M., and Gold, A. J. 1994b. Denitrification in riparian
- 41 wetlands receiving high and low groundwater nitrate. J. Environ. Qual. 23: 917-922.
- 42

1 2 3 4	Harris, G.L., Hodgkinson, R. A., Scott, M., Mason, D. J., and Pepper, T. J. 1997. Impact of hardy ornamental nursery stock (HONS) systems on the environment: losses of nutrients and agrochemicals. Agric. Water Manage. 34:95-110.
5 6 7 8 9	Hart, S. C., Stark, J. M., Davidson, E. A., and Firestone, M. K. 1994. Nitrogen mineralization, immobilization and nitrification, pp 985-1018, in Weaver, R. W et al. (eds) Methods of Soil Analysis, Part 2- Microbiological and Biochemical Properties, Soil Science Society of America Book Series # 5, Madison, Wisconsin.
10 11 12	Hefting, M. M and de Klein, J. M. 1998. Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. Environ. Pollution 102: 521-526.
13 14 15 16	Hefting, M. M., Bobbink, R., and de Caluwe, H. 2003. Nitrous oxide emissions and denitrification in chronically nitrate-loaded riparian buffer zone. J. Environ. Qual. 32: 1194-1203.
17 18 19	Hunter, R.G., and Faulkner, S. P. 2001. Denitrification potentials in restored and natural bottomland hardwood wetlands. Soil Sci. Soc. Am J. 65:1865-1872.
20 21 22 23 24	Intergovernmental Panel on Climate Change. 1996. Radiative forcing of climate change. The 1996 report of the scientific assessment working group of IPCC. Summary for policy makers. World Meteorology Organization, UN Environment Program, Geneva, Switzerland.
25 26 27 28	Jordan, E. T., Weller, D. E., and Correll, D. L. 1998. Denitrification in surface soils of a riparian forest: Effects of water, nitrate and sucrose additions. Soil Biol. Biochem. 30: 833-843.
28 29 30 31	Lindau, C. W., Delaune, R. D., and Pardue, J. H. 1994. Inorganic nitrogen processing and assimilation in forested wetlands. Hydrobiologia 277: 171-178.
32 33 34 35	Linn, D.M., and Doran, J. W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Sci. Soc. Am. J. 48:1267-1272.
36 37 38	Lowrance, R., Vellidis, G., and Hubbard, R. K. 1995. Denitrification in a restored riparian forest wetland. J. Environ. Qual. 24:808–815.
39 40 41 42	Magill, A. H., Aber, J. D., Bernston, G. M., McDowell, W. H., Nadelhoffer, K. J., Melillo, J. M., and Steudler, P. 2000. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3: 238-253.
43 44 45 46	Meyer, R. L., Zeng, R. J., Giugliano, V., and Blackall, L. L. 2005. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production. FEMS Microbial. Ecol.52: 329-338.

- 2 Mitsch, W.J., Day, J. W. Jr., William, W. J., Groffman, P. M., Hey, D. L., Randall, G.
- 3 W., and Wang, N. 2001. Reducing nitrogen loading to the Gulf of Mexico from the
- 4 Mississippi River Basin: Strategies to counter a persistent ecological problem. Bioscience
- 5 51:373-388.
- 6 SAS. 2000. SAS Version 8.3 User's Manual. SAS Inc. Carry, North Carolina, USA.
- 7 Silvan, N., Vasander, H., Karsisto, M., and Laine, J. 2003. Microbial immobilization of
- 8 added nitrogen and phosphorus in constructed wetland buffer. Appl. Soil Ecol. 24: 143-
- 9 149.
- 10 Sitaula, B. K. and Bakken, L. R. 1993. Nitrous oxide release from spruce forest soil:
- 11 Relationship with nitrification, methane uptake, temperature, moisture and fertilization.
- 12 Soil Biol. Biochem. 25: 1415-1421.
- 13
- 14 Skiba, U. M., Sheppard, L. J., MacDonald, J., and Fowler, D. 1998. Some key
- environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in the Scotland. Atmos. Environ. 32: 3311-3320.
- 17
- Smith, K. A., Clayton, H., McTaggard, I. P., Thomson, P. E., Arah, J. R., Scott, A. 1995.
 The measurement of nitrous oxide emissions from soil by using chambers. Philosophical
- 20 Transactions of the Royal Society of London, Series, A, 351: 327-338.
- 21
- Smolander, A., Kurka, A., Kitunen, V., and Malkonen, M. 1994. Microbial biomass C
 and N, and respiratory activity in soil of repeatedly limed, and N-and P-fertilized Norway
 spruce stands. Soil Biol. Biochem. 26: 503-509.
- 25
- Sudareshwar, P. V., Morris, J. T., Koepfler, E. K., and Fornwalt, B. 2003. Phosphorus
 limitation of coastal ecosystem processes. Science 299: 563-565.
- 28
- Tiedje, J.M. 1982. Denitrification. pp. 1011-1024. In Methods of Soil Analysis, 2nd
 Edition, edited by A.L. Page, Agronomy Monograph. 9, Am. Soc. Agronomy, Madison,
- 31

WI.

- 32
- Turner, R. E and Rabalais, N. N. 2003. Linking landscape and water quality in the
 Mississippi River basin for 200 years. BioScience 53:563-572.
- 35
- Turner, R. E., and Rabalais, N. N. 1994. Coastal eutrophication near the Mississippi
 River delta. Nature 368: 619-621.
- 38
- 39 Ullah, S, Breitenbeck, G. A., and Faulkner, S. P. 2005. Denitrification and N₂O emission
- 40 from forested and cultivated alluvial clay soil. Biogeochemistry 73: 499-513.
- 41

¹

1 2 3 4	Venterea, R. T., Groffman, P. M., Verchot, L. V., Magill, A. H., Aber, J. D., and Steudlers, P. A. 2003. Nitrogen oxide emissions from temperate forests soils receiving long-term nitrogen inputs. Global Change Biol. 9: 346-357.
5 6 7 8	Vitousek, P.M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., and Tilmanet, D. G. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7: 737-750.
9 10 11	Voroney, R. P. and Paul, E. A. 1984. Determination of Kc and Kn in situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 16: 9-14.
12 13 14	Voroney, R. P., Winter, J. P., and Beyaert, R. P. 1993. Soil microbial biomass carbon and nitrogen, pp. 277-286 in M. R. Carter (Eds). Soil Sampling and Methods of Analysis, Canadian Society of Soil Science, Lewis Publishers, Toronto, Canada.
15 16 17 18	Wallenstein, M. D., McNulty, S., Fernandez, I. J., Boggs, J., Schlesinger, W. H. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest. Ecol. Manage. 222 459-468.
19 20 21 22 22	Weitz, A. M., Linder, E., Frolking, S., Crill, P. M., and Keller, M. 2001. N ₂ O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biol. Biochem.33: 1077-1093.
23 24 25 26 27	White, J. R. and Reddy, K. R. 1999. Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades's wetland soils. Soil Sci. Soc. Am. J. 63: 1945-1954.
28 29 30	White, J.R., and Reddy. K. R. 2001. Influence of selected inorganic electron acceptors on organic nitrogen mineralization. Soil Sci. Soc. Am. J. 65:941–948.
31 32 33	Yu, K., Chen, G. and Patrick, W. H. Jr. 2004. Reduction of global warming potential contribution from rice field by irrigation, organic matter and fertilizer management. Global. Biogeochem. Cycles 18: GB3018, doi:10.1029.

1 List of Figures

- 2
- 3 Figure 1. Mean potential denitrification rate and standard error of soil slurries from
- riparian forest soils exposed (LF, CF) or not exposed (NF, HF) to mineral N loading from
 nursery runoff.
- 6
- 7 Figure 2. Relationship between denitrification rate and soluble organic carbon in soils
- 8 from riparian forest soils amended with 30 μ g NO₃ g⁻¹ soil. (Y = 294 + 0.58 X).
- 9
- 10 Figure 3. Relationship between denitrification rate and soluble organic carbon in soils
- 11 from riparian forest soils amended with 60 μ g NO₃ g⁻¹ soil (Y = 199 +1.70 X).
- 12

Table 1. Selected soil (0-10cm depth) properties of riparian forest sites exposed to

2	mineral N loading from	n nursery runoff (mean \pm standard error)	

Soil properties	N Exposed sites		Non-exposed sites		
	LF	LF CF		NF HF	
Clay (%)	39 ± 1.7	33 ± 7	8 ± 1	23 ± 1.5	
Silt (%)	51 ± 1.3	29 ± 3	9 ± 1	54 ± 9	
Soil texture	Silty clay	Clay loam	Loamy	Silt loam	
	loam		sand(organic)		
Approximate area (acres)	5	15	10	5	
Bulk density (g cm ⁻³)	0.90 ± 0.16	0.96 ± 0.07	$0.46 \pm .03$	$1.05\pm.05$	
Porosity $(cm^3 cm^{-3})$	0.61 ± 0.06	0.63 ± 0.02	0.82 ± 0.01	$0.60 \pm .02$	
Water-filled pore space (%)	100 ± 27	80 ± 4	100 ± 0.20	83 ± 12	
pH	6.3 ± 0.1	5.4 ± 0.2	4 ± 0.1	5.7 ± 0.2	
Soluble organic C ($\mu g g^{-1}$)	108 ± 5	163 ± 18	300 ± 32	158 ± 15	
Microbial biomass C ($\mu g g^{-1}$)	713 ± 65	978 ± 94	2578 ± 351	1238 ± 132	
Microbial biomass N ($\mu g g^{-1}$)	394 ± 70	383 ± 75	315 ± 54	165 ± 29	
Total P ($\mu g g^{-1}$)	177 ± 4	222 ± 36	27 ± 13	87 ± 26	
$NO_3-N(\mu g N g^{-1})$	2.7 ± 1.8	3.1 ± 0.6	0.92 ± 0.32	1.9 ± 1.16	
NH ₄ -N (μ g N g ⁻¹)	41 ± 5	23 ± 2	14 ± 1	8 ± 1	
Total C (% of dry soil)	4.6 ± 0.60	3.7 ± 0.50	8.3 ± 0.64	3.9 ± 0.20	
Total N (% of dry soil)	0.37 ± 0.03	0.23 ± 0.03	0.38 ± 0.03	0.20 ± 0.02	
C:N ratio	12.1	16.0	22.0	19.0	
N mineralization rate (μ g N g ⁻¹ h ⁻¹)	74 ± 28	91 ± 7	156 ± 79	98 ± 45	
Nitrification rate ($\mu g N g^{-1} h^{-1}$)	18 ± 6.1	41 ± 8.4	4 ± 1.2	3 ± 0.9	
Foliar N (% mass basis)	1.36 ± 0.11	1.32 ± 0.08	1.11 ± 0.6	1.11 ± 0.11	
3					
4					
5					

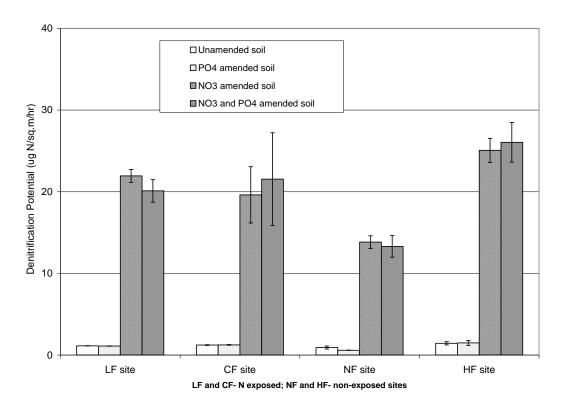


Figure 1. Mean potential denitrification rate and standard error of soil slurries from riparian forest soils

exposed (LF, CF) or not exposed (NF, HF) to mineral N loading from nursery runoff.

1

2 Table 2. Denitrification rate (mean \pm standard error) of soil from riparian sites exposed

3 (LF, CF) or not exposed (NF, HF) to N from nursery runoff.

Additional	N exposed sites	Non-exposed sites			
NO ₃ (μg NO ₃ g ⁻¹)	LF	CF	NF	HF	
	••••••	Denitrification	rate (µg N m ⁻² h ⁻¹	¹)	
0	$163\pm30~a^a$	136 ± 35 a	147 ± 09 a	150 ± 26 a	
30	$362\pm55\ b$	$431\pm28\ b$	$458 \pm 21 \text{ b}$	$346\pm45\ b$	
60	$398\pm76~b$	$474\pm105~b$	$674 \pm 104 \text{ c}$	$515\pm80\ b$	

4 ^a Means followed by same letters in a column show no significant difference (p>0.05)

5 using an ANOVA test.

- 1
- 2 Table 3. Denitrification rate (mean \pm standard error) of soil from riparian sites exposed
- 2 3 4 5 (LF, CF) or not exposed (NF, HF) to N from nursery runoff and amended with 5 μ g PO₄ g^{-1} soil.

Additional	N exposed sites	S	Non-exposed	sites
NO ₃ (µg NO ₃	LF	CF	NF	HF
g ⁻¹)	••••••••	Denitrification r	rate (μg N m ⁻² h ⁻¹)
0	$152 \pm 23 a^a$	152 ± 35 a	90 ± 12 a	97 ± 34 a
30	$351\pm56~b$	$424\pm28\ b$	$425\pm35~b$	$357\pm60\ b$
60	$451 \pm 37 \text{ b}$	$505\pm105\ b$	$625 \pm 37 \text{ c}$	$459\pm 64\ b$

^a Means followed by same letters in a column show no significant difference 6

7 (p > 0.05) using an ANOVA test.

 $\begin{array}{l} 2\\ 3 \end{array} \ \ \, Table \ \, 4. \ \, Net \ \, N_2O \ emission \ \, rates \ \, (mean\ \pm\ standard\ error) \ \, of \ \, soil \ \, from \ \, riparian \ \, sites \end{array}$

4	exposed (LF, CF) or not exposed (NF, HF) to N from nursery runoff.	
---	--	--

Additional N exposed sites Non		Non-exposed s	ites	
NO ₃ (μg NO ₃ g ⁻¹)	LF	CF	NF	HF
_]	Net N ₂ O emissio	n rate (µg N m ⁻² h ⁻⁷	¹)
0	3 ± 0.6 a	1 ± 1.3 a	1.20 ± 0.5 a	0.8 ± 0.9 a
30	25 ± 1.8 b	$20 \pm 2.7 \text{ b}$	$17\pm4.7~b$	$12 \pm 2.1 \text{ b}$
60	33 ± 2.7 c	32 ± 3.1 c	$22\pm2.2\;b$	$17 \pm 2.8 \text{ b}$

^a Means followed by same letters in a column show no significant difference

(p > 0.05) using an ANOVA test.

factors (Pearson correlation analysis) in riparian forest soils amended with 0, 30, and 60 μ g NO₃ g⁻¹ soil.

	Denitrification rate ($\mu g \ N \ m^{-2} \ h^{-1}$)			N ₂ O emission rate (μ g N m ⁻² h ⁻¹)		
Additional NO ₃ g ⁻¹ soil	0	30	60	0	30	60
Variables	0.0-0					
Soluble organic C	0.07^{a} $(0.78)^{b}$	0.55* (0.02)	0.74* (.0009)	-0.41 (0.10)	-0.10 (0.70)	0.15 (0.55)
Microbial	0.08	0.54*	0.72*	-0.38	0.16	0.10
piomass C	(0.77)	(0.03)	(0.001)	(0.14)	(0.53)	(0.69)
Microbial	-0.15	0.20	-0.35	-0.01	0.38	0.50*
piomass N	(0.57)	(0.45)	(0.18)	(0.94)	(0.14)	(0.04)
Fotal C	0.08	0.26	0.46**	-0.06	0.11	-0.04
	(0.75)	(0.32)	(0.07)	(0.82)	(0.67)	(0.86)
Fotal N	0.20	0.11	0.16	0.55*	0.24	0.11
	(0.44)	(0.67)	(0.54)	(0.02)	(0.35)	(0.66)
C:N ratio	-0.10	0.22	0.48	-0.72*	-0.16	0.10
	(0.66)	(0.40)	(0.05)	(0.001)	(0.54)	(0.70)
оH	-0.02	-0.41	-0.52*	0.59*	0.02	-0.18
	(0.92)	(0.11)	(0.04)	(0.01)	(0.92)	(0.48)
Fotal P	-0.22	-0.08	-0.48**	0.29	0.43	0.41
	(0.42)	(0.76)	(0.06)	(0.29)	(0.10)	(0.12)
NO ₃	0.22	-0.29	-0.43	0.15	0.06	0.25
5	(0.40)	(0.26)	(0.09)	(0.57)	(0.80)	(0.34)
NH4	-0.04	0.05	-0.35	0.84*	0.22	0.02
·	(0.85)	(0.83)	(0.18)	(0.0001)	(0.40)	(0.92)

^a Pearson correlation coefficient. ^b Significance (n =16) at p < 0.05 (*), p < 0.10 (**), or not significant (no asterisk). 6

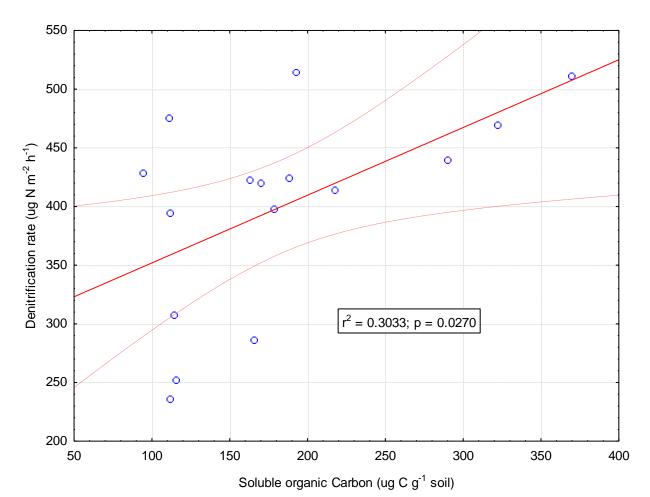
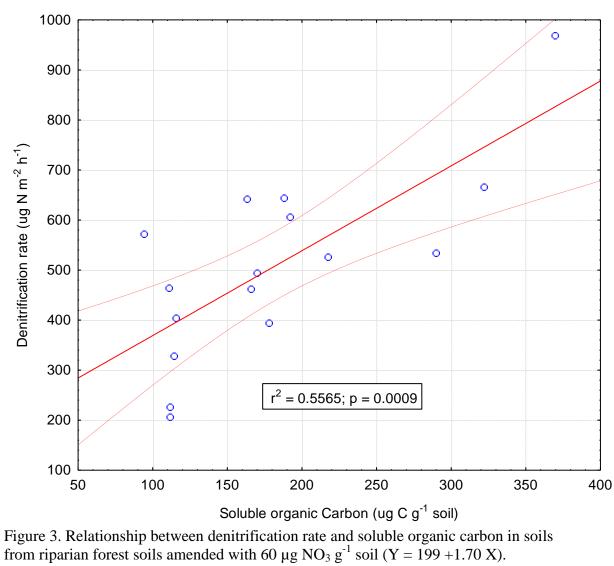



Figure 2. Relationship between denitrification rate and soluble organic carbon in soils from riparian forest soils amended with 30 μ g NO₃ g⁻¹ soil (Y = 294 + 0.58 X).

- 4 5 6