1,894 research outputs found

    The GLAS physical inversion method for analysis of HIRS2/MSU sounding data

    Get PDF
    Goddard Laboratory for Atmospheric Sciences has developed a method to derive atmospheric temperature profiles, sea or land surface temperatures, sea ice extent and snow cover, and cloud heights and fractional cloud, from HIRS2/MSU radiance data. Chapter 1 describes the physics used in the radiative transfer calculations and demonstrates the accuracy of the calculations. Chapter 2 describes the rapid transmittance algorithm used and demonstrates its accuracy. Chapter 3 describes the theory and application of the techniques used to analyze the satellite data. Chapter 4 shows results obtained for January 1979

    Sweetheart

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6328/thumbnail.jp

    Communications Biophysics

    Get PDF
    Contains reports on two research projects.National Institutes of Health (Grant 5 P01 GM14940-05

    A Dramatic Decrease in Carbon Star Formation in M31

    Full text link
    We analyze resolved stellar near-infrared photometry of 21 HST fields in M31 to constrain the impact of metallicity on the formation of carbon stars. Observations of nearby galaxies show that the carbon stars are increasingly rare at higher metallicity. Models indicate that carbon star formation efficiency drops due to the decrease in dredge-up efficiency in metal-rich thermally-pulsing Asymptotic Giant Branch (TP-AGB) stars, coupled to a higher initial abundance of oxygen. However, while models predict a metallicity ceiling above which carbon stars cannot form, previous observations have not yet pinpointed this limit. Our new observations reliably separate carbon stars from M-type TP-AGB stars across 2.6-13.7 kpc of M31's metal-rich disk using HST WFC3/IR medium-band filters. We find that the ratio of C to M stars (C/M) decreases more rapidly than extrapolations of observations in more metal-poor galaxies, resulting in a C/M that is too low by more than a factor of 10 in the innermost fields and indicating a dramatic decline in C star formation efficiency at metallicities higher than [M/H] ≈\approx -0.1 dex. The metallicity ceiling remains undetected, but must occur at metallicities higher than what is measured in M31's inner disk ([M/H] ≳\gtrsim +0.06 dex).Comment: 16 pages, 13 Figures; text clarifications in response to the referee. Results are unchanged; accepted for publication in Ap
    • …
    corecore