259 research outputs found

    Combination of scoring schemes for protein docking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weighted geometric correlation based on optimised atom specific weighting factors and combined them with our previously published amino acid specific scoring and with a comprehensive SVM-based scoring function.</p> <p>Results</p> <p>The scoring with the atom specific weighting factors yields better results than the amino acid specific scoring. In combination with SVM-based scoring functions the percentage of complexes for which a near native structure can be predicted within the top 100 ranks increased from 14% with the geometric scoring to 54% with the combination of all scoring functions. Especially for the enzyme-inhibitor complexes the results of the ranking are excellent. For half of these complexes a near-native structure can be predicted within the first 10 proposed structures and for more than 86% of all enzyme-inhibitor complexes within the first 50 predicted structures.</p> <p>Conclusion</p> <p>We were able to develop a combination of different scoring schemes which considers a series of previously described and some new scoring criteria yielding a remarkable improvement of prediction quality.</p

    PLEKHA7 Is an Adherens Junction Protein with a Tissue Distribution and Subcellular Localization Distinct from ZO-1 and E-Cadherin

    Get PDF
    The pleckstrin-homology-domain-containing protein PLEKHA7 was recently identified as a protein linking the E-cadherin-p120 ctn complex to the microtubule cytoskeleton. Here we characterize the expression, tissue distribution and subcellular localization of PLEKHA7 by immunoblotting, immunofluorescence microscopy, immunoelectron microscopy, and northern blotting in mammalian tissues. Anti-PLEKHA7 antibodies label the junctional regions of cultured kidney epithelial cells by immunofluorescence microscopy, and major polypeptides of Mr ∼135 kDa and ∼145 kDa by immunoblotting of lysates of cells and tissues. Two PLEKHA7 transcripts (∼5.5 kb and ∼6.5 kb) are detected in epithelial tissues. PLEKHA7 is detected at epithelial junctions in sections of kidney, liver, pancreas, intestine, retina, and cornea, and its tissue distribution and subcellular localization are distinct from ZO-1. For example, PLEKHA7 is not detected within kidney glomeruli. Similarly to E-cadherin, p120 ctn, β-catenin and α-catenin, PLEKHA7 is concentrated in the apical junctional belt, but unlike these adherens junction markers, and similarly to afadin, PLEKHA7 is not localized along the lateral region of polarized epithelial cells. Immunoelectron microscopy definitively establishes that PLEKHA7 is localized at the adherens junctions in colonic epithelial cells, at a mean distance of 28 nm from the plasma membrane. In summary, we show that PLEKHA7 is a cytoplasmic component of the epithelial adherens junction belt, with a subcellular localization and tissue distribution that is distinct from that of ZO-1 and most AJ proteins, and we provide the first description of its distribution and localization in several tissues

    Estimation of population size when capture probability depends on individual state

    Get PDF
    We develop a multi-state model to estimate the size of a closed population from capture–recapture studies. We consider the case where capture–recapture data are not of a simple binary form, but where the state of an individual is also recorded upon every capture as a discrete variable. The proposed multi-state model can be regarded as a generalisation of the commonly applied set of closed population models to a multi-state form. The model allows for heterogeneity within the capture probabilities associated with each state while also permitting individuals to move between the different discrete states. A closed-form expression for the likelihood is presented in terms of a set of sufficient statistics. The link between existing models for capture heterogeneity is established, and simulation is used to show that the estimate of population size can be biased when movement between states is not accounted for. The proposed unconditional approach is also compared to a conditional approach to assess estimation bias. The model derived in this paper is motivated by a real ecological data set on great crested newts, Triturus cristatus. Supplementary materials accompanying this paper appear online

    Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers

    Get PDF
    Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source

    Modulation of vascular reactivity by perivascular adipose tissue (PVAT)

    Get PDF
    Purpose of Review: In this review we discuss the role of perivascular adipose tissue (PVAT) in the modulation of vascular contractility and arterial pressure, focusing on the role of the renin-angiotensin-aldosterone system and oxidative stress/inflammation. Recent Findings: PVAT possesses an relevant endocrine-paracrine activity, which may be altered in several pathophysiological and clinical conditions. During the last two decades it has been shown PVAT may modulate vascular reactivity. It has also been previously demonstrated that inflammation in adipose tissue may be implicated in vascular dysfunction. In particular, adipocytes secrete a number of adipokines with various functions, as well as several vasoactive factors, together with components of the renin-angiotensin system which may act at local or at systemic level. It has been shown that the anticontractile effect of PVAT is lost in obesity, probably as a consequence of the development of adipocyte hypertrophy, inflammation, and oxidative stress. Summary: Adipose tissue dysfunction is interrelated with inflammation and oxidative stress, thus contributing to endothelial dysfunction observed in several pathological and clinical conditions such as obesity and hypertension. Decreased local adiponectin level, macrophage recruitment and infiltration, and activation of renin-angiotensin-aldosterone system could play an important role in this regards

    The use of global rating scales for OSCEs in veterinary medicine

    Get PDF
    OSCEs (Objective Structured Clinical Examinations) are widely used in health professions to assess clinical skills competence. Raters use standardized binary checklists (CL) or multi-dimensional global rating scales (GRS) to score candidates performing specific tasks. This study assessed the reliability of CL and GRS scores in the assessment of veterinary students, and is the first study to demonstrate the reliability of GRS within veterinary medical education. Twelve raters from two different schools (6 from University of Calgary [UCVM] and 6 from Royal (Dick) School of Veterinary Studies [R(D)SVS] were asked to score 12 students (6 from each school). All raters assessed all students (video recordings) during 4 OSCE stations (bovine haltering, gowning and gloving, equine bandaging and skin suturing). Raters scored students using a CL, followed by the GRS. Novice raters (6 R(D)SVS) were assessed independently of expert raters (6 UCVM). Generalizability theory (G theory), analysis of variance (ANOVA) and t-tests were used to determine the reliability of rater scores, assess any between school differences (by student, by rater), and determine if there were differences between CL and GRS scores. There was no significant difference in rater performance with use of the CL or the GRS. Scores from the CL were significantly higher than scores from the GRS. The reliability of checklist scores were .42 and .76 for novice and expert raters respectively. The reliability of the global rating scale scores were .7 and .86 for novice and expert raters respectively. A decision study (D-study) showed that once trained using CL, GRS could be utilized to reliably score clinical skills in veterinary medicine with both novice and experienced raters

    Fetal and infant origins of asthma

    Get PDF
    Previous studies have suggested that asthma, like other common diseases, has at least part of its origin early in life. Low birth weight has been shown to be associated with increased risks of asthma, chronic obstructive airway disease, and impaired lung function in adults, and increased risks of respiratory symptoms in early childhood. The developmental plasticity hypothesis suggests that the associations between low birth weight and diseases in later life are explained by adaptation mechanisms in fetal life and infancy in response to various adverse exposures. Various pathways leading from adverse fetal and infant exposures to growth adaptations and respiratory health outcomes have been studied, including fetal and early infant growth patterns, maternal smoking and diet, children’s diet, respiratory tract infections and acetaminophen use, and genetic susceptibility. Still, the specific adverse exposures in fetal and early postnatal life leading to respiratory disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life, and their epigenetic mechanisms may underlie the complex associations of low birth weight with respiratory disease in later life. New well-designed epidemiological studies are needed to identify the specific underlying mechanisms. This review is focused on specific adverse fetal and infant growth patterns and exposures, genetic susceptibility, possible respiratory adaptations and perspectives for new studies
    corecore