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Estimation of Population Size When Capture
Probability Depends on Individual States

Hannah Worthington , Rachel S. McCrea, Ruth King, and

Richard A. Griffiths

We develop a multi-state model to estimate the size of a closed population from

capture–recapture studies. We consider the case where capture–recapture data are not of

a simple binary form, but where the state of an individual is also recorded upon every

capture as a discrete variable. The proposed multi-state model can be regarded as a

generalisation of the commonly applied set of closed population models to a multi-state

form. The model allows for heterogeneity within the capture probabilities associated with

each state while also permitting individuals to move between the different discrete states.

A closed-form expression for the likelihood is presented in terms of a set of sufficient

statistics. The link between existing models for capture heterogeneity is established,

and simulation is used to show that the estimate of population size can be biased when

movement between states is not accounted for. The proposed unconditional approach is

also compared to a conditional approach to assess estimation bias. The model derived

in this paper is motivated by a real ecological data set on great crested newts, Triturus

cristatus.

Supplementary materials accompanying this paper appear online.

Key Words: Abundance; Closed population; Individual heterogeneity; Transition prob-

abilities.

1. INTRODUCTION

The models presented within this paper focus on the estimation of the size of a closed

population along with capture and transition probabilities between discrete states using real

ecological capture–recapture data on a population of great crested newts Triturus cristatus.

An assumption often made in the modelling of capture–recapture data is that of homogeneity

in the probability of capture. When estimating the size of a closed population, one in which
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the population being sampled remains constant across all capture occasions, violations of

this assumption can lead to biased estimates of abundance (Seber 1982; Hwang and Huggins

2005). A number of models have been proposed that relax this homogeneity assumption. In

particular, Pollock (1974) and Otis et al. (1978) proposed a set of eight closed population

capture–recapture models. These models allow the probability of capture to be affected by

three factors: time (capture probabilities vary by occasion); behaviour (probability of initial

capture is different to all subsequent recaptures) and heterogeneity (each individual has a

different capture probability). These models have been fitted using a variety of methods

including maximum likelihood (Otis et al. 1978; Agresti 1994; Norris and Pollock 1996;

Coull and Agresti 1999; Pledger 2000), the jackknife (Burnham and Overton 1978, 1979;

Pollock and Otto 1983), moment methods based on sample coverage (Chao et al. 1992) and

Bayesian methods (Casteldine 1981; Gazey and Staley 1986; Smith 1988, 1991; George and

Robert 1992; Diebolt and Robert 1993; Ghosh and Norris 2005; King and Brooks 2008).

To specifically address the problem of heterogeneity in the capture probabilities, a variety

of models have been proposed, including finite mixtures (Diebolt and Robert 1993; Agresti

1994; Norris and Pollock 1996; Pledger 2000) and infinite mixtures (Coull and Agresti 1999;

Dorazio and Royle 2003). A comparison of examples of the two types of mixture through

simulation are presented in Pledger (2005) and Dorazio and Royle (2005). An issue that

commonly arises when estimating the size of closed populations is that different individual

heterogeneity models which may be deemed to fit the data equally well can give rise to very

different estimates of the abundance (Link 2003, 2006). An extended mixture model which

provides a convenient framework for model selection is presented in Morgan and Ridout

(2008); see also Holzmann et al. (2006).

We extend the previous models for closed capture–recapture data to account for individual

heterogeneity where the “state” of an individual is also recorded as a discrete variable. We

consider the case where the discrete state is time-varying; for the time-invariant case, see, for

example, King and McCrea (2019) for a review. In standard closed capture–recapture studies,

for each capture occasion, individuals from a closed population are sampled, returned to the

population, and on subsequent occasions attempts are made to recapture them. Individuals

within the population are marked when initially captured. If the marking method used

assigns a unique mark to each captured individual (e.g. individual ID tags, natural physical

markings), then an individual encounter history can be constructed for each individual

observed within the study. This history typically takes the form of a vector of 0s and 1s:

with a 0 denoting an individual was not encountered and a 1 denoting an individual was

captured. We consider the case where individuals may be observed in different discrete

states. For example, states may correspond to “resting” and “foraging” or “breeding” and

“not breeding”. Observed histories then correspond to whether an individual is observed

or not, and, given that an individual is observed, its corresponding state. For example, an

individual with encounter history

0 2 1 0 2 2

was initially captured (and marked) in state 2 on occasion 2, captured in state 1 on occasion

3, missed on occasion 4, then captured on occasions 5 and 6 in state 2. In general, individuals
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are able to move between the states during the study period and the capture probabilities

may be dependent on the state of an individual. For example, if the states correspond to

“resting” and “foraging”, the capture probabilities may be very different with a significantly

higher capture probability for individuals in the “foraging” state compared to “resting”.

Failure to account for the state dependence may result in biased population estimates. There

may also be biological interest in the transition rates between the states (Stoklosa et al.

2012). To estimate the number of unobserved individuals (and hence the total population

size), a model is fitted to the observed data, permitting the estimation of the associated

model parameters and the number of unobserved individuals. The number of individuals in

each state on each occasion can then be derived using the parameter estimates. For such

models, a number of standard assumptions are made. These include: the population as a

whole is closed (individuals cannot leave or join the population during the study period),

marks cannot be lost, and individuals are identified without error [see McCrea and Morgan

(2014), chapter 3, for further discussion and references therein].

The model we present can be considered a generalisation of the time-dependent multi-

state closed population model of Schwarz and Ganter (1995) to a form that additionally

includes trap dependence and heterogeneity in the capture probabilities. It may also be seen

as a closed population capture–recapture equivalent to the Arnason–Schwarz (AS) model

(Arnason 1972, 1973; Brownie et al. 1993; Schwarz et al. 1993; King and Brooks 2003;

Lebreton et al. 2009), for open capture–recapture data. Initially developed for multi-site

capture–recapture data, but more generally applicable to individuals captured in discrete

states, the AS model is a multi-state generalisation of the Cormack–Jolly–Seber (CJS)

model (Cormack 1964; Jolly 1965; Seber 1965). The CJS and AS models allow for a time

dependence in the capture probabilities, with the AS model additionally able to allow capture

probabilities to be state dependent. However, these models condition on the first capture

of an individual and so are unable to estimate the total population size directly. Dupuis

and Schwarz (2007) consider a similar multi-state extension for the Jolly–Seber model for

estimating abundance in open populations, fitted within a Bayesian (data augmentation)

framework.

We consider a similar AS-type state dependence in the closed population scenario, within

an explicit closed-form likelihood framework where population size is estimated directly

through the likelihood. In particular, we compare the performance of the new unconditional

multi-state model to the existing single-state models which ignore the state information and

do not include movement between states and a conditional approach where the population

size is not estimated directly through the likelihood. We present the likelihood in terms of

a set of minimal sufficient statistics which permits the fit of the model to be assessed using

a Pearson chi-squared test.

The motivation for developing this methodology relates to a study on great crested newts.

A species with protected status in Europe, individuals within the study population are cap-

tured weekly throughout the breeding season, with the additional state information referring

to the pond in which the individuals are captured. Originally consisting of four ponds, the

study site was extended to a total of eight ponds in 2009 with the new ponds being first

colonised in the 2010 breeding season. How these new ponds have been colonised, the

effectiveness of the traps to capture individuals and whether there are differences in the
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capture probabilities between the old and new ponds are of particular interest. Ignoring any

differences between the old and new ponds, for instance differing amounts of vegetation

which may be affecting the probability of capture, may lead to poorer estimates of the total

population size, and for this study, the total population size and the states themselves are of

interest.

In Sect. 2, we review the construction of existing single-state closed population models in

terms of sets of sufficient statistics, before introducing the likelihood function for the multi-

state model and considering the time-varying population size for each state in Sect. 3. The

performance of the multi-state model is compared to a conditional approach and existing

heterogeneity models using simulation in Sect. 4 with a particular focus on the bias and

precision of the population size estimates and the ability of the new model to estimate state

specific parameters and population size. The new model is applied to the data set of great

crested newts in Sect. 5. The paper concludes with a general discussion in Sect. 6.

2. SINGLE-STATE CLOSED POPULATION MODELS

Consider a study with T capture occasions labelled t = 1, . . . , T and let N denote the

total population size, which is to be estimated. Let the set of encounter histories be given

by x = {xi t : i = 1, . . . , N , t = 1, . . . , T }, where xi t = 1 indicates individual i was

captured on occasion t , and xi t = 0 indicates individual i was not captured on occasion

t . We let n denote the number of observed individuals within the study. Further, we define

the set of capture probabilities p = {pi t : i = 1, . . . , N , t = 1, . . . , T } where pi t denotes

the probability individual i is captured on occasion t (we note that for generality the initial

capture probability and recapture probabilities may be different). The overall likelihood

expression for a closed population model can be expressed in the form,

L(N , p; x) ∝
N !

(N − n)!

N∏

i=1

Pr(encounter history for individual i). (1)

The existing modelling approaches for data of this type differ by the capture probability

parameter dependence. Using the notation of Otis et al. (1978), we denote models by Mγ

where γ describes the dependence structure placed on the capture probabilities. In general,

γ ⊆ {t, b, h}, where t denotes temporal dependence; b denotes behavioural dependence (or

trap response); and h denotes individual heterogeneity. This leads to a total of eight different

model dependencies, corresponding to the inclusion/exclusion of each of the different types

of dependence, with M0 denoting the model with a constant capture probability which

ignores all three dependencies. We note that given a particular form of heterogeneity, multiple

models may be defined in terms of the specific dependence. For example, and of particular

interest in this paper, a number of different models have been proposed to include individual

heterogeneity. In particular, in the absence of additional individual covariate information,

the capture probabilities have been specified as finite or infinite mixtures models. These

include (with associated notation):
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Mh(k): individual capture probabilities come from a mixture model with k components

(Pledger 2000);

Mh(be): individual capture probabilities specified to be from an underlying beta distri-

bution (Burnham 1972; Dorazio and Royle 2003);

Mh(b−be): individual capture probabilities come from a mixture model with two com-

ponents: one component simply has a fixed capture probability, while the other com-

ponent is specified to be from some underlying beta distribution (Morgan and Ridout

2008).

For a given model, the corresponding likelihood function can be specified and maximised

to obtain the MLEs of the model parameters (including the beta distribution parameters for

models Mh(be) and Mh(b−be)). The likelihood function given above is a function of the

observed encounter histories x. However, this likelihood can be expressed more efficiently

via the use of sufficient statistics for some of the models. In particular, for models M0

and Mh , a set of sufficient statistics is the Schnabel census (Schnabel 1938), defined to

be { f1, f2, . . . , fT }, where f j denotes the number of individuals captured on a total of

j occasions. The Schnabel census denotes the set of minimal sufficient statistics for the

heterogeneity models Mh ; for model M0 the minimal sufficient statistics reduce further to

f =
∑T

j=1 j f j , corresponding to simply the total number of encounters over the study. For

model Mt , the minimal sufficient statistics are {n1, . . . , nT }, where nt denotes the number of

individuals captured on occasion t = 1, . . . , T . For model Mtb, minimal sufficient statistics

are given by {z1, . . . , zT , n2, . . . , nT } where zt denotes the number of individuals captured

for the first time on occasion t . Finally, for model Mb, the sufficient statistics can be reduced

to {n, y, f } where n =
∑T

t=1 zt , corresponding to the number of observed individuals

within the study; y =
∑T

t=1(t − 1)zt , corresponding to total number of capture occasions

before initial observation summed over all captured individuals; and f =
∑T

t=1 nt , the total

number of captures (equivalent to the equation for f given above).

The use of sufficient statistics allows for an efficient evaluation of the likelihood. In

addition, they have the advantage of being able to be used to assess the performance of

each of these models through the calculation of the Pearson chi-squared statistic, since the

likelihood of the data is of multinomial form.

3. MULTI-STATE CLOSED POPULATION MODEL

We now extend the previous closed population models for standard encounter histories

to those with individual time-varying discrete state information. In particular, we let R

denote the set of possible discrete states, which for convenience we label as r = 1, . . . , R.

Following the AS analogy to the CJS model, we assume that movement between these states

is modelled as a first-order Markov process. We then define the following model parameters:

pt (r): the probability an individual is initially captured at time t = 1, . . . , T given

that the individual is in state r ∈ R at this time;

ct (r): the probability an individual is recaptured at time t = 2, . . . , T given that the

individual is in state r ∈ R at this time;
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ψt (r, s): probability an individual is in state s ∈ R at time t+1, given that an individual

is in state r ∈ R at time t = 1, . . . , T − 1;

α(r): probability an individual is in state r ∈ R at time t = 1.

For notational convenience, we let p = {pt (r) : t = 1, . . . , T, r ∈ R}, c = {ct (r) :

t = 2, . . . , T, r ∈ R}, ψ = {ψt (r, s) : t = 1, . . . , T − 1, r, s ∈ R} and α = {α(r) :

r ∈ R}. We note that by definition,
∑

r∈R
α(r) = 1. To retain model identifiability, the

recapture probabilities are specified as a function of the initial capture probabilities, such that

logit ct (r) = (logit pt (r)) + β, where β denotes the trap dependence; β < 0 corresponds

to a trap shy response; and β > 0 a trap happy response [see, for example, Chao (2001);

King and Brooks (2008) for the analogous single-state case].

3.1. LIKELIHOOD FORMULATION

The likelihood function is again of the same form as given in Eq. (1), where now the

probability of the encounter history includes not only detection/non-detection at each time

but also the associated discrete state. In order to evaluate the likelihood efficiently, we follow

King and McCrea (2014) and consider all possible partial encounter histories that could be

observed corresponding to (i) the beginning of the study to initial capture; (ii) successive

captures; and (iii) final capture to the end of the study. This leads to the following sufficient

statistics:

(i) zt (r): the number of individuals that are observed for the first time at time t =

1, . . . , T in state r ∈ R;

(ii) nt1,t2(r, s): the number of individuals that are observed at time t1 = 1, . . . , T − 1 in

state r ∈ R and next observed at time t2 = t1 + 1, . . . , T in state s ∈ R;

(iii)vt (r): the number of individuals that are observed for the last time at time t =

1, . . . , T − 1 in state r ∈ R.

For notational convenience, we set z = {zt (r) : t = 1, . . . , T, r ∈ R}, n = {nt1,t2(r, s) :

t1 = 1, . . . , T −1, t2 = t1+1, . . . , T, r, s ∈ R} and v = {vt (r) : t = 1, . . . , T −1, r ∈ R}.

In order to express the likelihood as a function of the above sufficient statistics, we

need to calculate the probabilities for each of the associated partial encounter histories. In

deriving these probabilities, we consider similar notation to King and McCrea (2014). We let

Qt1,t2(r, s) denote the probability that an individual in state r ∈ R at time t1 = 1, . . . , T −1

is in state s ∈ R at time t2 = t1 + 1, . . . , T and not observed on any occasions between

t1 and t2. The form of this probability is dependent on whether an individual has yet to be

captured for the first time or has been previously captured on at least one occasion. We let

Q P
t1,t2

(r, s) denote the former and QC
t1,t2

(r, s) the latter scenario. (If the capture probabilities

are not behaviour dependent, this distinction is not required.) Then, it follows immediately

that

Q P
t1,t2

(r, s) =

{
ψt1(r, s) t2 = t1 + 1∑

u∈R
ψt1(r, u)(1 − pt1+1(u))Q P

t1+1,t2
(u, s) t2 = t1 + 2, . . . , T .
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QC
t1,t2

(r, s) follows analogously using the appropriate recapture probabilities. We now

consider the probabilities associated with each of the above sufficient statistics. We begin

by considering the probabilities associated with an individual being observed for the first

time [i.e. case (i) and statistic z]. Let ζt (r) denote the probability an individual is initially

captured at time t = 1, . . . , T in state r ∈ R. Then, using a probabilistic argument we have

ζt (r) =

{
p1(r)α(r) t = 1

pt (r)
∑

u∈R
α(u)(1 − p1(u))Q P

1,t (u, r) t = 2, . . . , T .

We now consider case (ii) (associated with statistic n) and the probability of being

recaptured, conditional on the previous capture. Let Ot1,t2(r, s) denote the probability an

individual in state r ∈ R at time t1 = 1, . . . , T − 1 is next recaptured in state s ∈ R at time

t2 = t1 + 1, . . . , T . Then, by definition,

Ot1,t2(r, s) = QC
t1,t2

(r, s)ct2(s).

The final case (iii) (associated with statistic v) considers the probability an individual

is not observed again within the study, following their final capture. Let χt (r) denote the

probability an individual in state r ∈ R at time t = 1, . . . , T − 1 is not observed again

during the study. Then, for all r ∈ R, it follows that

χt (r) =

{
1 t = T∑

u∈R
QC

t,T (r, u)(1 − cT (u)) t = 1, . . . , T − 1.

By definition, an individual observed at the last capture time is clearly not able to be observed

again within the study, i.e. the probability it is not seen again is 1 (this means that we do not

need to consider this term within the likelihood expression).

Finally, in order to permit estimation of the total population size, we let ρ denote the

probability an individual is not observed within the study. From the law of total probability

(considering all possible states an individual may be in at the first and last capture time), it

follows that

ρ =
∑

r,s∈R

α(r)(1 − p1(r))Q P
1,T (r, s)(1 − pT (s)). (2)

The corresponding unconditional likelihood function, specified as a function of the suf-

ficient statistics, is of the form,

L(N , p, c,ψ,α; n, v, z) ∝
N !

(N − n)!
ρN−n

T∏

t=1

∏

r∈R

[
ζt (r)zt (r)

]

×

T −1∏

t=1

∏

r∈R

[
χt (r)vt (r)

T∏

τ=t+1

∏

s∈R

Ot,τ (r, s)nt,τ (r,s)

]
.
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The above likelihood allows for temporal effects, behavioural effects and individual

heterogeneity (in the form of discrete covariates), which we represent notationally as M R
tbh ,

where the superscript, R, denotes the number of discrete states. Sub-models can be derived

by specifying restrictions on the model parameters. In particular, the basic dependence

structures can be described with

M R
0 : pt (r) = ct (r) = p, for all r ∈ R and t = 1, . . . , T ;

M R
t : pt (r) = ct (r) = pt , for all r ∈ R and t = 1, . . . , T ;

M R
b : pt (r) = p and ct (r) = c, for all r ∈ R and t = 1, . . . , T ;

M R
h : pt (r) = ct (r) = p(r), for all r ∈ R and t = 1, . . . , T ;

with associated restrictions for models with multiple dependencies. We note that the case

of heterogeneous capture probabilities, M R
h , is fully determined by the additional discrete

state information where a capture probability is estimated for each discrete state and remains

constant for each state across all capture occasions.

Evaluating the likelihood through the sufficient statistics uses recursions similar to those

in hidden Markov models (HMMs) but in more efficient forms. In the HMM framework,

the likelihood considers each individual encounter history in turn. By using more efficient

sufficient statistics, we are able to reduce the number of operations required to calculate the

likelihood. This is achieved by using the probabilities associated with each of the sufficient

statistics for multiple partial histories.

The likelihood estimates the total population size N . This is the number of individu-

als in the population on each capture occasion (since a closed population remains con-

stant). The number of individuals in each state on each occasion can be estimated using a

forward–backward-type algorithm. Typically applied to hidden Markov models (HMMs)

the forward–backward algorithm calculates the conditional state probabilities on each occa-

sion for a given observation sequence. We use these conditional probabilities calculated for

the observed capture histories and the estimated total population size to obtain estimates of

state-dependent abundance. Our approach differs from the typical HMM application since

the states are partially observed (uncertainty in the state of an individual only occurs when

they are not captured). Further details on this approach are presented in the online sup-

plementary material Appendix A and are demonstrated in the simulation study and newt

application below.

3.2. CONDITIONAL AND UNCONDITIONAL APPROACHES

Bishop et al. (1975) classified population size modelling into both conditional and uncon-

ditional approaches. The unconditional approach involves maximising the full likelihood,

written as a function of the observed capture histories (or associated sufficient statistics)

and the number of unobserved individuals to obtain an MLE of the total population size

N . The conditional approach (Sanathanan 1972; Huggins 1989, 1991) involves maximis-

ing the conditional likelihood L(c) (conditional on the number of observed individuals)

given by,
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L(c)( p, c,ψ,α; n, v, z) ∝
n!

(1 − ρ)n

T∏

t=1

∏

r∈R

[
ζt (r)zt (r)

]

×

T −1∏

t=1

∏

r∈R

[
χt (r)vt (r)

T∏

τ=t+1

∏

s∈R

Ot,τ (r, s)nt,τ (r,s)

]

to obtain estimates of the capture probabilities. The population size is then estimated using a

Horvitz–Thompson-like estimator; see McCrea and Morgan (2014, pp.33–35) for the single-

state case and Schwarz and Ganter (1995) for the multi-state case (though here estimation

of the total population was not of interest for the given study). Specifically,

N̂ =
n

1 − ρ̂
, (3)

where ρ̂ is calculated by Eq. 2 using the MLEs obtained from the conditional likelihood.

Fewster and Jupp (2009) demonstrated that, for a wide class of models, the difference

between the population size estimates obtained from the conditional and unconditional

approaches is of order 1. However, the differences were large when capture probabilities

included both behavioural and heterogeneity effects, and in this case advocated the use of

unconditional approaches. Here, we develop the multi-state unconditional approach.

4. SIMULATION STUDY

We conduct a simulation study of the proposed M R
h model (i.e. no temporal or behavioural

effects but a constant capture probability for each discrete state). We compare the perfor-

mance of fitting this true covariate model with the corresponding conditional approach and a

range of alternative individual heterogeneity models which ignore the state covariate (mod-

els Mh(2), Mh(3), Mh(be) and Mh(b−be)), and models that ignore the individual heterogeneity

all together (models M0, Mt and Mb). Of particular interest is the bias and precision of

the population estimates for the different models, especially those that do not account for

state dependence in the capture probabilities or permit movement between states. We are

also interested in how accurately the population size in each state on each occasion can be

estimated using a forward–backward-type algorithm (see Appendix A of the online supple-

mentary material). For each simulation, we assume that there are six encounter occasions

(T = 6) and a total population size of 100 individuals (N = 100). We consider four dif-

ferent sets of parameter values for the simulation study, corresponding to different numbers

of states (R = 2 and R = 3) and different sets of transition matrices. We evaluate two sce-

narios corresponding to “low” mobility and “high” mobility between states. In particular,

for R = 2 low mobility corresponds to ψ(1, 2) = 0.3 and ψ(2, 1) = 0.2; high mobil-

ity to ψ(1, 2) = 0.9 and ψ(2, 1) = 0.6. The equilibrium distribution for the low- and

high-mobility cases is the same, and we set the initial state distribution to be equal to this

equilibrium distribution, such that α(1) = 0.4 (and α(2) = 0.6). Finally, for each of these

cases, the capture probabilities for the different states are set to p(1) = 0.15 and p(2) = 0.4.

For R = 3, the transition matrices are specified to be:
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Figure 1. Boxplots of the bias of the model parameters for the true model M2
h

for the simulated cases of low

mobility (left) and high mobility (right). Parameter values used are given in the text.

Figure 2. Estimates of population size (N ) from nine models for the simulated cases of low mobility (left) and

high mobility (right) between two discrete capture states. Parameter values used are given in the text.
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0.45 0.45 0.1
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for low and high mobilities, respectively. Again, these transition matrices are specified such

that they have the same equilibrium distribution, and we set the initial state distribution to be

equal to this equilibrium distribution, such that α(1) = 0.33, α(2) = 0.4 (and α(3) = 0.27).

The corresponding state-dependent capture probabilities are defined to be p(1) = 0.15,

p(2) = 0.25 and p(3) = 0.4. For each set of parameter values, we simulate a total of

1000 datasets and fit the following models to the data: M0, Mt , Mb, Mh(2), Mh(3), Mh(be),

Mh(b−be), the true model M R
h and the conditional model M

R(c)
h . In the conditional model,

N is not estimated directly through the likelihood but is calculated using the Horvitz–

Thompson-like estimator in Eq. 3.

Figure 1 shows boxplots of the bias of the model parameters for the true model M2
h

(R = 2). Figure 2 displays boxplots of population size estimates from all the models when

R = 2. The corresponding plots for the three-state case are given in Figs. 3 and 4.

For the true model, in all cases considered, the estimates of N do not show any bias. In the

two-state scenario, the remaining model parameters are estimated well with little difference
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Figure 3. Boxplots of the bias of the model parameters for the true model M3
h

for the simulated cases of low

mobility (left) and high mobility (right). Parameter values used are given in the text.

Figure 4. Estimates of population size (N ) from nine models for the simulated cases of low mobility (left) and

high mobility (right) between three discrete capture states. Parameter values used are given in the text.

in variation between low and high mobilities. In the three-state scenario, the remaining model

parameters are estimated well in the case of low mobility. In the scenario of high mobility

for the three-state case, some of the remaining model parameter estimates appear to exhibit

some bias and there is very large variation in all of the parameter estimates. This appears to be

due to an “averaging” or “mixing” effect across the states where there is greater uncertainty

about the state of an individual when they are not captured leading to greater uncertainty in

the parameter estimates. The traditional models without any individual heterogeneity, M0,

Mt and Mb, indicate a strong negative bias for the case of low mobility for both the two- and

three-state scenarios. For these three models, the variability in the estimates of N is similar

for low and high mobilities for both two and three states. For the low-mobility scenarios, the

heterogeneity models Mh(2), Mh(3), Mh(be) and Mh(b−be) all estimate N well, but there are a

large number of extremely large estimates. For the high-mobility scenario, the heterogeneity

models Mh(2), Mh(3), Mh(be) and Mh(b−be) appear to be positively biased. This is due to

underestimation of the capture or mixture probabilities or both caused by the mixing effect

described above. When there are three states, the heterogeneity models have higher precision

in estimating N when there is high mobility. In comparison with the existing heterogeneity

models, the new multi-state model has the greatest precision of all the heterogeneity models

considered for low and high mobility in both the two- and three-state cases. The conditional

model displays very similar results to the unconditional approach, which appears to agree
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with the findings of Fewster and Jupp (2009). The new multi-state model shows no bias in

estimating the population size in each state on each occasion in all cases except the three-

state high-mobility scenario. In the case of low mobility, the estimated number in states with

higher capture probabilities shows less variation, and this is expected since more individuals

in the state are captured leading to less uncertainty about the number in the state. For the

three-state high-mobility case, the estimates are biased to varying degrees, and this is again

due to the mixing issue described above and the high uncertainty of the model parameters.

Plots of the bias of this state-dependent population size are given in Appendix B of the

online supplementary material.

5. APPLICATION: GREAT CRESTED NEWTS

These data are collected from a study site on the University of Kent campus and are

included as electronic supplementary material to this article. Data have been collected on

the population of newts breeding at the site since 2002. Within this study, capture occasions

occur weekly throughout the breeding season, with individuals being identified through

unique physical markings. The additional state information corresponds to the pond in

which the newts are captured. Originally the site consisted of four ponds but was extended

in 2009 to a total of eight ponds, four “old” ponds (state 1) and four “new” ponds (state

2), with the new ponds first being colonised in 2010. Of specific interest is whether there

were any differences between the old and new ponds in terms of capture and transition

probabilities when they were first colonised and whether any differences have remained.

In order to assess this, we compare results from the 2010 and 2013 data sets. In order to

make the assumption of closure reasonable, we take a subset of six weeks (T = 6) from the

middle of each of the 2010 and 2013 breeding seasons, during which it can be assumed that

all breeding newts have arrived at the breeding ponds and have not yet started to leave the

area.

In the 2010 season, a total of 33 unique individuals were encountered over the study period

considered, while in 2013 there were 44 unique individuals encountered. We fit a range of

models to the data, initially considering the new multi-state model with heterogeneity, model

M2
h . Table 1 provides the MLEs and 95% nonparametric bootstrap confidence intervals (CIs)

for the parameters of the M2
h model for the 2010 and 2013 data. Figure 5 shows the estimated

population size in each state for each occasion for model M2
h for the 2010 data and model

M2
t for the 2013 data (see model selection discussion below). The 95% CIs are calculated

using a nonparametric bootstrap with 9999 bootstrap resamples to avoid intervals outside

permissible boundary ranges.

The MLEs of the capture probabilities indicate that in 2010 the old ponds had a higher

capture probability than for the new ponds. However, by 2013 the higher capture probability

for the old ponds seems to have disappeared with similar capture probabilities for both old

and new ponds (see below for discussion of model selection). The old ponds had more

vegetation around the traps which meant that the newts had a greater chance of entering

them than in the new ponds, where traps were more exposed. In addition, for 2010 the

transition probabilities indicate a general movement trend away from the old ponds to the
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Table 1. MLEs and 95% nonparametric bootstrap confidence intervals for the parameters of the M2
h

model for

the great crested newt study 2010 and 2013 data.

Parameter 2010 data 2013 data

MLE 95% CI MLE 95% CI

N 33.95 (33.00, 36.33) 45.96 (44.00, 49.42)

p(1) 0.82 (0.39, 0.99) 0.36 (0.21, 0.48)

p(2) 0.33 (0.22, 0.54) 0.41 (0.30, 0.56)

ψ(1, 2) 0.31 (0.07, 0.48) 0.05 (0.00, 0.15)

ψ(2, 1) 0.03 (0.00, 0.09) 0.08 (0.02, 0.19)

α(1) 0.48 (0.31, 0.67) 0.33 (0.16, 0.54)

Figure 5. Point estimates and 95% nonparametric bootstrap confidence intervals for state- and occasion-dependent

population size for model M2
h

(left) and M2
t (right) for the great crested newt study 2010 and 2013 data, respectively.

new ponds, but once a newt reaches the new pond demonstrates high fidelity to the new

ponds. This movement can be clearly seen in Fig. 5 (left-hand plot). Previous analyses

suggested that new recruits (first time breeders) used the new ponds more frequently than

newts returning to the ponds (Lewis 2010). By 2013, the newts show high fidelity to both the

old and new ponds. Finally, we note that in 2010 the newts appear to be evenly distributed

between the two ponds at the beginning of the study period, but by 2013, the proportion of

newts increases in the new ponds (though the confidence intervals are reasonably wide).

Interestingly, the results imply that only a single individual was missed during the study

period in 2010 and two were missed during the 2013 study period. These estimates are

in keeping with the ecological understanding of the population. It is believed that capture

probability over the breeding season as a whole is very high. This was confirmed in 2005

when a drift fence was set up confirming that all individuals had been captured at least once.

A period of six weeks has been selected here in the central part of the breeding season, to

accommodate the assumption of closure. Outside of the selected six week period, in 2010, 7

individuals were seen before the selected period, but not during the study and one individual

after but not during the study period. No newts were captured both before and after. Of those

seen only before, all were seen quite early in the season, while the one individual seen after

the study period is seen immediately after the 6 week period. In 2013, 5 individuals were
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Table 2. 
AIC values, MLEs and 95% nonparametric bootstrap CIs for N (denoted N̂ ) and corresponding chi-

squared goodness-of-fit parametric bootstrap p-values for four multi-state models for the great crested

newt study 2010 and 2013 data.

Model 2010 data 2013 data


AIC N̂ 95% CI p-value 
AIC N̂ 95% CI p-value

M2
0 8.40 33.1 (33.0, 34.2) 0.004 6.77 44.0 (44.0, 48.3) 0.175

M2
h

0 33.9 (33.0, 36.3) 0.022 6.67 46.0 (44.0, 49.4) 0.203

M2
t 5.34 33.0 (33.0, 33.8) 0.007 0 45.6 (44.0, 47.8) 0.794

M2
th

1.70 33.0 (33.0, 35.4) 0.039 1.69 45.7 (44.0, 48.9) 0.803

Table 3. MLEs and 95% nonparametric bootstrap confidence intervals for the parameters of the M2
t model for

the great crested newt study 2013 data.

Parameter MLE 95% CI

N 45.63 (44.00, 47.76)

p1 0.39 (0.26, 0.55)

p2 0.53 (0.38, 0.68)

p3 0.35 (0.21, 0.50)

p4 0.18 (0.07, 0.29)

p5 0.46 (0.31, 0.61)

p6 0.44 (0.30, 0.59)

ψ(1, 2) 0.05 (0.00, 0.15)

ψ(2, 1) 0.07 (0.02, 0.14)

α(1) 0.32 (0.16, 0.49)

seen before, but not during, the closed period (all were seen very early in the season) and

one individual is recaptured before and after the study period, but not during.

We now consider in further detail the issue of model selection. We fit the additional mod-

els M2
0 , M2

t and M2
th and compare them using the AIC statistic. For model M2

th , we specify

the additional time dependence to be additive, so that logit pt (2) = (logit pt (1))+η. Table 2

provides the corresponding 
AIC values, estimates and 95% nonparametric bootstrap con-

fidence intervals of N , and the chi-squared goodness-of-fit parametric bootstrap p-value

for each model for both years of data. The model M2
h is deemed optimal for the 2010 data

(only state-dependent capture probabilities) and M2
t for the 2013 data (only time-dependent

capture probabilities). The corresponding parameter estimates for model M2
t for 2013 are

provided in Table 3. However, we note that in both cases the model M2
th has a 
AIC < 2,

indicating that there is little difference in support for the model deemed optimal and the

model with both time- and state-dependent capture probabilities.

All models fitted to the data suggest high fidelity to the old ponds in 2013 and the new

ponds in both years with an increase in the proportion of individuals arriving at the new

ponds in 2013 with similar estimates for the total population size. The difference in choice

of pond on arrival can be seen in Fig. 5. In comparison with 2010 (model M2
h ), model M2

t

for the 2013 data shows the distribution of newts between the old and new ponds converging
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Table 4. MLEs and 95% nonparametric bootstrap confidence intervals for N (denoted N̂ ) for seven single-state

models for the great crested newt study 2010 and 2013 data.

Model 2010 data 2013 data

N̂ 95% CI N̂ 95% CI

M0 33.1 (33.0, 33.4) 44.0 (44.0, 48.5)

Mt 33.0 (33.0, 33.8) 45.6 (44.0, 47.8)

Mb 33.0 (33.0, 33.1) 45.3 (44.0, 50.0)

Mh(2) 41.5 (33.0, 10,000.0) 46.5 (44.8, 64.9)

Mh(3) 41.5 (33.0, 10,000.0) 46.5 (44.0, 64.1)

Mh(be) 34.7 (33.0, 47.8) 46.7 (44.0, 55.3)

Mh(b−be) 41.5 (33.0, 10,000.0) 46.5 (44.0, 62.7)

to a near equal split between the two. The Pearson’s chi-squared goodness-of-fit test (with

parametric bootstrap p-values from 9999 bootstraps) does not indicate a lack of fit for the

models fitted to the 2013 data. However, for the 2010 data, it is suggestive of a lack of fit. In

conducting the goodness-of-fit test we do not pool small cells together. Fewer individuals

are observed in 2010 leading to an increase in the number of small cells observed.

For comparative purposes, the estimates of population size and 95% nonparametric boot-

strap confidence intervals resulting from alternative standard models are displayed in Table 4.

The models without any individual heterogeneity component (M0, Mt and Mb) all provide

similar estimates for N . However, we note that for 2010, the estimate of N is a boundary

estimate for models Mt and Mb. Further, for both 2010 and 2013 both the three group

binomial mixture model, Mh(3) and the binomial beta-binomial model Mh(b−be) also lead to

boundary estimates for model parameters, essentially reducing the model to the two bino-

mial mixture model Mh(2). For the 2013 data, the estimates are generally similar to those

obtained for the multi-state model. However, for the smaller dataset in 2010, the models

without any individual heterogeneity appear to underestimate the population size, while the

mixture models provide larger estimates (and very wide confidence intervals).

6. DISCUSSION

We have focussed on deriving multi-state closed capture–recapture models, where addi-

tional individual time-varying discrete covariates are observed. The models derived can be

viewed as a closed population analogy to the AS model, assuming a first-order Marko-

vian process for the transitions between states. The construction of an explicit closed-form

(unconditional) likelihood via a set of sufficient statistics permits efficient evaluation of the

likelihood and standard goodness-of-fit techniques, in the form of Pearson’s chi-squared

tests, to be applied. This can lead to generally small cell entries in the goodness-of-fit test,

with different approaches for pooling cells and their interpretation a focus of current research.

Similarities of the closed multi-state model to the AS model also permit other extensions to

be immediately applied. For example, in many cases, state may be only partially observed,

including failure to observe a state when an individual is observed, or observing states with
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error (King and McCrea 2014). In the case where no states are known with certainty, the

model reduces to a multi-event-type model (Pradel 2005) corresponding to a finite mixture

model which allows for transitions between states. Conditional on the observed number

of individuals, these multi-event models can be fitted within E-SURGE (Choquet et al.

2009) to estimate the model parameters (though this package does not have the associated

Horvitz–Thompson-like estimator incorporated into it). We note that the limiting case where

no states are observed upon recapture and there are no transitions between states, the model

reduces to the mixture models proposed by Pledger (2000). Further, the modelling approach

can be applied to the case of continuous individual time-varying covariates by considering

an approximate (discretised) likelihood of multi-state form (Langrock and King 2013). The

movement between the different states can also be generalised by removing the first-order

Markov assumption, where the dwell-time distribution (the time spent in each state) is geo-

metric, and instead imposing a more general dwell-time distribution, for example a shifted

Poisson or negative-binomial distribution (King and Langrock 2016).

The proposed multi-state closed population model shows better accuracy and precision in

estimating N compared to competing models where the additional discrete state information

is ignored. Further, additional insight can be obtained with regard to the states, which may

themselves be of interest. Most notably, transition probabilities can be estimated (and hence

the stable equilibrium distribution of the population over the states) and the relationship

between state and capture probabilities evaluated. For the newt data analysis conducted,

particular interest lays in the potential transition of newts from the old ponds to the new

ponds installed in 2009 with a interest also in the total population size, not least with regard

to the completeness of the data collection process and observing all individuals present.

The analyses concluded that the data survey collection process appears to be close to a

complete census of individuals present at the site which is unusual for capture–recapture

studies. Further, there was a general transition of newts from the old ponds to the new ponds

between 2010 and 2013, but with little movement within the season. Finally, it appeared

that there were initial differences between the capture probabilities in new and old ponds, in

2010, but once the new ponds had become established, the state dependence was no longer

significant by 2013.

In the presence of an underlying multi-state system process for closed populations, an

unconditional likelihood can be derived and MLEs of the model parameters obtained, extend-

ing the previous conditional approaches. In the absence of the observed discrete covariate

data, existing heterogeneity models appear to perform adequately; however, including the

covariate information does improve the precision of the population estimate, as would be

expected. The model developed here can be extended to the open population case, permitting

the estimation of both recruitment and departure times from the study population along with

state-dependent capture and transition probabilities, i.e. to stopover models where departure

times can additionally depend on time since recruitment. Developing these models using

classical methods is a focus of current research.
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